
CBLORB
The Program

Complete Program

Build 3/100422 Graham Nelson

cblorb is a command-line tool which forms one of the components of the Inform 7 design system for interactive
�ction. All installations of Inform 7 contain a copy of cblorb, though few users are aware of it, since it
doesn't usually communicate with them directly. Instead, the Inform user interface calls it when needed. The
moment comes at the end of the translation process, but only when the Release button rather than the Go
or Replay buttons was clicked. cblorb has two main jobs: to bind up the translated project, together with
any pictures, sounds, or cover art, into a single �le called a \blorb" which can be given to players on other
machines to play; and to produce associated websites, solution �les and so on as demanded by \Release..."
instruction(s) in the source text.

The cblorb Manual P/man

Purpose

A guide for users of cblorb.

P/man.x1-3 Some de�nitions; x4 cblorb within the Inform user interface; x5-6 cblorb at the command line; x7-11 Example blurb

scripts; x12-21 Speci�cation of the Blurb language

x1. Some de�nitions. cblorb is a command-line tool which forms one of the components of the Inform
7 design system for interactive �ction. All installations of Inform 7 contain a copy of cblorb, though few
users are aware of it, since it doesn't usually communicate with them directly. Instead, the Inform user
interface calls it when needed. The moment comes at the end of the translation process, but only when the
Release button rather than the Go or Replay buttons was clicked. cblorb has two main jobs: to bind up the
translated project, together with any pictures, sounds, or cover art, into a single �le called a \blorb" which
can be given to players on other machines to play; and to produce associated websites, solution �les and so
on as demanded by \Release..." instruction(s) in the source text.

x2. \Blorb" is a general-purpose wrapper format designed as a way to gather together audiovisual media
and bibliographic data for works of IF. The format was devised and formally speci�ed by Andrew Plotkin
around 2000, and its name is borrowed from that of a magic spell in Infocom's classic work, Enchanter.
(\The blorb spell (safely protect a small object as though in a strong box).") Although Inform 6, the then
current version, did not itself generate blorb �les, a Perl script called perlblorb was provided in 2001 so
that the user could perform the wrapping-up process. perlblorb is no longer used, and survives only in the
name of cblorb, which is a C version of what had previously been written in Perl. This means it can run on
machines with no Perl installation, which Inform 7 needs to be able to do. Unlike perlblorb, cblorb is \under
the hood"; the user does not need to give it instructions. This manual is therefore useful only for people
needing to generate Inform-related websites, or who are maintaining the Inform user interface applications.

x3. Sentences in Inform source text such as:

Release along with public source text, cover art, and a website.

do in e�ect transmit instructions to cblorb, but cblorb doesn't read them in this natural-language form.
Instead, the ni component of Inform 7 translates these instructions into a script for cblorb to follow. This
script is called a \blurb".

\Blurb" is a mini-language for specifying how the materials in a work of IF should be packaged up for release.
It was originally codi�ed in 2001 as a standard way to describe how a blorb �le should be put together, but
it was extended in 2005 and again in 2008 so that it could also organise accompanying �les released along
with the blorb.

The original Blurb language was documented in chapter 43 of the DM4 (i.e., the Inform Designer's Manual,
fourth edition, 2001); for clarity, we will call that language \Blurb 2001". Today's Blurb language is a little
di�erent. Some features of Blurb 2001 are deprecated and no longer used, while numerous other syntaxes
are new. Because of this the DM4 speci�cation is no longer useful, so we will give a full description below of
Blurb as it currently stands.

P/man - The cblorb Manual x4 3

x4. cblorb within the Inform user interface. This is the sequence of events when the user clicks Release
in the user interface application (the \interface"):

(1) The interface calls ni, the I7 compiler, as normal except that the -release command-line switch is
speci�ed.

(2) ni compiles the source text into I6 code. If Problems occur, ni exits with a return code of 1, and the
interface displays those, and then stops the process.

(3) If no Problems occur, ni writes two additional �les besides the I6 code it always writes:
(a) Metadata.iFiction, an iFiction record;
(b) Release.blurb, a blurb �le of instructions for cblorb to follow later.

(4) ni having returned 0 to indicate success, the interface next calls the Inform 6 compiler (called, e.g.,
inform-6.31-biplatform, but we'll call it i6 here). The interface calls i6 as normal except that the S

and D switches, for strict checking and for debugging, are o� instead of on. If ni works properly then i6

should certainly not produce syntax errors, though it will surely produce warnings; all the same it can
fail if, say, Z-machine memory limits are exceeded. The interface should deal with such failures exactly
as it would in a non-Release run.

(5) i6 having returned 0 to indicate success, the interface next calls cblorb as follows. Let Path be the
path to the folder containing the Inform project being released, which we'll call This.inform. Then the
interface should call:

cblorb -platform "Path/This.inform/Release.blurb" "Path/This.inform/Build/output.gblorb"

where -platform should be one of -osx, -windows or -unix. (The default is -osx.) The two �lename
arguments are the Blurb script for cblorb to follow, which was written by ni at step 3, and the �lename
of the Blorb �le which it should write. Note that the interface should give this the extension \.gblorb"
if the Glulx setting is in force, and \.zblorb" if the Z-machine.

(6) Like its predecessors, cblorb can produce error messages, and it returns 0 (success) or 1 (failure). But
the interface doesn't actually need to look at that, because cblorb also produces a much fuller report
in the form of an HTML page to be displayed on the Problems tab. This is StatusCblorb.html, in the
project's Build folder. (This is a change made in 2010: in the past, the interface simply chose between
a generic success and failure page on the basis of the return code.)

(7) There are no more tools to call, but the interface has one last duty (if cblorb succeeded) { to move the
blorb somewhere sensible on disc, where the user can see it. Leaving it where it is will not do { the user
never looks inside the Build project of a folder, which on Mac OS X, for instance, is not even visible. To
see what to do, the interface must look at the textual output from cblorb, printed to stdout (of course
the interface is free to redirect this if it wants to). If cblorb printed a line in the form:

Copy blorb to: [[...]]

then the interface should do as it's told. For instance:

Copy blorb to: [[/Users/gnelson/Examples/Bronze Materials/Release/Bronze.gblorb]]

If cblorb printed no such line, the interface should put up a Save As... dialogue box, and invite the user
to choose a destination.

x5. cblorb at the command line. When using cblorb as a command-line tool, it's probably convenient
to download a standalone copy from the Inform website, though that's identical to the copy squirreled away
somewhere in the application. On Mac OS X, it lives at:

Inform.app/Contents/Resources/Compilers/cBlorb

Its main usage is:

cblorb -platform [-options] blurbfile [blorbfile]

where -platform should be one of -osx, -windows, -unix. At present the only practical di�erence this makes
is that the Windows setting causes cblorb to use \ instead of / as a �lename separator.

The blorb�le �lename is optional since cblorb does not always need to make a blorb; that depends on the
instructions handed to it in the blurbfile.

P/man - The cblorb Manual x6 4

x6. The other command-line options are:

-help: prints summaries of command-line use and the Blurb language.

-trace: mainly for debugging, but possibly also useful as a verbose mode.

-project Whatever.inform: tells cblorb to assume the usual settings for this project. (That means the
blurb�le is set to Whatever.inform/Release.blurb and the blorb�le to Whatever.inform/Build/output.gblorb.)

x7. Example blurb scripts. This �rst script instructs cblorb to carry out its mission { it makes a simple
Blorb wrapping up a story �le with bibliographic data, but nothing more, and nothing else is released.

storyfile "/Users/gnelson/Examples/Zinc.inform/Build/output.ulx" include

ifiction "/Users/gnelson/Examples/Zinc.inform/Metadata.iFiction" include

These two lines tell cblorb to include the story �le and the iFiction record respectively.

x8. A more ambitious Blorb can be made like so:

storyfile leafname "Audiophilia.gblorb"

storyfile "/Users/gnelson/Examples/Audiophilia.inform/Build/output.ulx" include

ifiction "/Users/gnelson/Examples/Audiophilia.inform/Metadata.iFiction" include

cover "/Users/gnelson/Examples/Audiophilia Materials/Cover.png"

picture 1 "/Users/gnelson/Examples/Audiophilia Materials/Cover.png"

sound 3 "/Users/gnelson/Examples/Audiophilia Materials/Sounds/Powermac.aiff"

sound 4 "/Users/gnelson/Examples/Audiophilia Materials/Sounds/Bach.ogg"

The cover image is included only once, but declaring it as picture 1 makes it available to the story �le for
display internally as well as externally. Resource ID 2, apparently skipped, is in fact the story �le.

x9. And here's a very short script, which makes cblorb generate a solution �le from the Skein of a project:

project folder "/Users/gnelson/Examples/Zinc.inform"

release to "/Users/gnelson/Examples/Zinc Materials/Release"

solution

This time no blorb �le is made. The opening line tells cblorb which Inform project we're dealing with,
allowing it to look at the various �les inside { its Skein, for instance, which is used to create a solution. The
second line tells cblorb where to put all of its output { everything it makes. Only the third line directly
causes cblorb to do anything.

x10. More ambitiously, this time we'll make a website for a project, but again without making a blorb:

project folder "/Users/gnelson/Examples/Audiophilia.inform"

release to "/Users/gnelson/Examples/Audiophilia Materials/Release"

placeholder [IFID] = "AD5648BA-18A2-48A6-9554-4F6C53484824"

placeholder [RELEASE] = "1"

placeholder [YEAR] = "2009"

placeholder [TITLE] = "Audiophilia"

placeholder [AUTHOR] = "Graham Nelson"

placeholder [BLURB] = "A test project for sound effect production."

template path "/Users/gnelson/Library/Inform/Templates"

css

website "Standard"

The �rst novelty here is the setting of placeholders. These are named pieces of text which appear on the
website being generated: where the text \[RELEASE]" appears in the template, cblorb writes the value
we've set for it, in this case \1". Some of these values look like numbers, but to cblorb they all hold text.
A few placeholder names are reserved by cblorb for its own use, and it will produce errors if we try to set
those, but none of those in this example is reserved.

P/man - The cblorb Manual x11 5

Template paths tell cblorb where to �nd templates. Any number of these can be set { including none at
all, but if so then commands needing a named template, like website, can't be used. cblorb looks for any
template it needs by trying each template path in turn (the earliest de�ned having the highest priority). The
blurb �les produced by ni in its -release mode containa chain of three template paths, for the individual
project folder, the user's library of installed templates, and the built-in stock inside the Inform user interface
application, respectively.

The command css tells cblorb that it is allowed to use CSS styles to make its web pages more appealing to
look at: this results in generally better HTML, easier to use in other contexts, too.

All of that set things up so that the website command could be used, which actually does something { it
creates a website in the release-to location, taking its design from the template named. If we were to add
any of these commands {

source public

solution public

ifiction public

{ then the website would be graced with these additions.

x11. The previous examples all involved Inform projects, but cblorb can also deal with stand-alone �les of
Inform source text { notably extensions. For example, here we make a website out of an extension:

release to "Test Site"

placeholder [TITLE] = "Locksmith"

placeholder [AUTHOR] = "Emily Short"

placeholder [RUBRIC] = "Implicit handling of doors and..." and so on
template path "/Users/gnelson/Library/Inform/Templates"

css

release file "style.css" from "Extended"

release file "index.html" from "Extended"

release file "Extensions/Emily Short/Locksmith.i7x"

release source "Extensions/Emily Short/Locksmith.i7x" using "extsrc.html" from "Extended"

This time we're using a template called \Extended", and the script tells cblorb exactly what to do with it.
The \release �le... from..." command tells cblorb to extract the named �le from this template and to copy it
into the release folder { if it's a \.html" �le, placeholders are substituted with their values. The simpler form,
\release �le ...", just tells cblorb to copy that actual �le { here, it puts a copy of the extension itself into the
release folder. The �nal line produces a run of pages, in all likelihood, for the source and documentation of
the extension, with the design drawn from \Extended" again.

(\Extended" isn't supplied inside Inform; it's a template we're using to help generate the Inform website,
rather than something meant for end users. There's nothing very special about it, in any case.)

P/man - The cblorb Manual x12 6

x12. Speci�cation of the Blurb language. A blorb script should be a text �le, using the Unicode
character set and encoded as UTF-8 without a byte order marker { in other words, a plain text �le. It
consists of lines of up to 10239 bytes in length each, divided by any of the four line-end markers in common
use (CR, LF, CR LF or LF CR), though the same line-end marker should be used throughout the �le.

Each command occupies one and only one line of text. (In Blorb 2001, the now-deprecated palette command
could occupy multiple lines, but cblorb will choke on such a usage.) Lines are permitted to be empty or to
contain only white space. Lines whose �rst non-white-space character is an exclamation mark are treated as
comments, that is, ignored. \White space" means spaces and tab characters. An entirely empty blurb �le,
containing nothing but white space, is perfectly legal though useless.

In the following description:

hstringi means any text within double-quotes, not containing either double-quote or new-line characters, of
up to 2048 bytes.

h�lenamei means any double-quoted �lename.

hnumberi means a decimal number in the range 0 to 32767.

hidi means either nothing at all, or a hnumberi, or a sequence of up to 20 letters, digits or underscore
characters _.

hdimi indicates screen dimensions, and must take the form hnumberixhnumberi.

hratioi is a fraction in the form hnumberi/hnumberi. 0/0 is legal but otherwise both numbers must be positive.

hcolouri is a colour expressed as six hexadecimal digits, as in some HTML tags: for instance F5DEB3 is the
colour of wheat, with red value F5 (on a scale 00, none, to FF, full), green value DE and blue value B3.
Hexadecimal digits may be given in either upper or lower case.

x13. The full set of commands is as follows. First, core commands for making a blorb:

author hstringi

Adds this author name to the �le.

copyright hstringi

Adds this copyright declaration to the blorb �le. It would normally consist of short text such as \(c) J.
Mango Pineapple 2007" rather than a lengthy legal discourse.

release hnumberi

Gives this release number to the blorb �le.

auxiliary h�lenamei hstringi

Tells us that an auxiliary �le { for instance, a PDF manual { is associated with the release but will not be
embedded directly into the blorb �le. For instance,

auxiliary "map.png" "Black Pete's treasure map"

The string should be a textual description of the contents. Every auxiliary �le should have a �lename
including an extension usefully describing its format, as in \.png": if there is no extension, then the auxiliary
resource is assumed to be a mini-website housed in a subfolder with this name.

ifiction h�lenamei include

The �le should be a valid iFiction record for the work. This is an XML �le speci�ed in the Treaty of Babel,
a cross-IF-system standard for specifying bibliographic data; it will be embedded into the blorb.

storyfile h�lenamei unsupported by cblorb

storyfile h�lenamei include

Speci�es the �lename of the story �le which these resources are being attached to. Blorb 2001 allowed for
blorbs to be made which held everything to do with the release except the story �le; that way a release
might consist of one story �le plus one Blorb �le containing its pictures and sounds. The Blorb �le would
then contain a note of the release number, serial code and checksum of the associated story �le so that an
interpreter can try to match up the two �les at run-time. If the include option is used, however, the entire

P/man - The cblorb Manual x14 7

story �le is embedded within the Blorb �le, so that game and resources are all bound up in one single �le.
cblorb always does this, and does not support storyfile without include.

x14. Second, now-deprecated commands describing our ideal screen display:

palette 16 bit unsupported by cblorb

palette 32 bit unsupported by cblorb

palette { hcolour-1i hcolour-Ni } unsupported by cblorb

Blorb allows designers to signal to the interpreter that a particular colour-scheme is in use. The �rst two
options simply suggest that the pictures are best displayed using at least 16-bit, or 32-bit, colours. The
third option speci�es colours used in the pictures in terms of red/green/blue levels, and the braces allow the
sequence of colours to continue over many lines. At least one and at most 256 colours may be de�ned in this
way. This is only a \clue" to the interpreter; see the Blorb speci�cation for details.

resolution hdimi unsupported by cblorb

resolution hdimi min hdimi unsupported by cblorb

resolution hdimi max hdimi unsupported by cblorb

resolution hdimi min hdimi max hdimi unsupported by cblorb

Allows the designer to signal a preferred screen size, in real pixels, in case the interpreter should have any
choice over this. The minimum and maximum values are the extreme values at which the designer thinks
the game will be playable: they're optional, the default values being 0� 0 and 1�1.

x15. Third, commands for adding audiovisual resources:

sound hidi h�lenamei
sound hidi h�lenamei repeat hnumberi unsupported by cblorb

sound hidi h�lenamei repeat forever unsupported by cblorb

sound hidi h�lenamei music unsupported by cblorb

sound hidi h�lenamei song unsupported by cblorb

Tells us to take a sound sample from the named �le and make it the sound e�ect with the given number. Most
forms of sound are now deprecated: repeat information (the number of repeats to be played) is meaningful
only with Z-machine version 3 story �les using sound e�ects, and Inform 7 does not generate those; the music
and song keywords specify unusual sound formats. Nowadays the straight sound command should always be
used regardless of format.

picture hidi h�lenamei
picture hidi h�lenamei scale hratioi unsupported by cblorb

picture hidi h�lenamei scale min hratioi unsupported by cblorb

picture hidi h�lenamei scale hratioi min hratioi unsupported by cblorb

(and so on) is a similar command for images. In 2001, the image �le was required to be a PNG, but it can
now alternatively be a JPEG.

Optionally, the designer can specify a scale factor at which the interpreter will display the image { or,
alternatively, a range of acceptable scale factors, from which the interpreter may choose its own scale factor.
(By default an image is not scaleable and an interpreter must display it pixel-for-pixel.) There are three
optional scale factors given: the preferred scale factor, the minimum and the maximum allowed. The
minimum and maximum each default to the preferred value if not given, and the default preferred scale
factor is 1. Scale factors are expressed as fractions: so for instance,

picture "flag/png" scale 3/1

means \always display three times its normal size", whereas

picture "backdrop/png" scale min 1/10 max 8/1

means\you can display this anywhere between one tenth normal size and eight times normal size, but if
possible it ought to be just its normal size".

P/man - The cblorb Manual x16 8

cblorb does not support any of the scaled forms of picture. As with the exotic forms of sound, they now
seem pass�e. We no longer need to worry too much about the size of the blorb �le, nor about screens with
very low resolution; an iPhone today has a screen resolution close to that of a typical desktop of 2001.

cover h�lenamei

speci�es that this is the cover art; it must also be declared with a picture command in the usual way, and
must have picture ID 1.

x16. Three commands help us to specify locations.

project folder h�lenamei

Tells cblorb to look for associated resources, such as the Skein �le, within this Inform project.

release to h�lenamei

Tells cblorb that all of its output should go into this folder. (Well, except that the blorb �le itself will
be written to the location speci�ed in the command line arguments, but see the description above of how
cblorb then contrives to move it.) The folder must already exist, and cblorb won't create it. Under some
circumstances Inform will seem to be creating the release folder if it doesn't already exist, but that's always
the work of ni, not cblorb.

template path h�lenamei

Sets a search path for templates { a folder in which to look for them. There can be any number of template
paths set, and cblorb checks them in order of declaration (i.e., most important �rst).

x17. Next we come to commands for specifying what cblorb should release. At present it has seven forms
of output: Blorb �le, solution �le, source text, iFiction record, miscellaneous �le, website and interpreter.

No explicit single command causes a Blorb �le to be generated; it will be made automatically if one of the
above commands to include the story �le, pictures, etc., is present in the script, and otherwise not generated.

solution

solution public

causes a solution �le to be generated in the release folder. The mechanism for this is described in Writing
with Inform. The di�erence between the two commands a�ects only a website also being made, if one is: a
public solution will be included in its links, thus being made available to the public who read the website.

ifiction

ifiction public

is similar, but for the iFiction record of the project.

source

source public

is again similar, but here there's a twist. If the source is public, then cblorb doesn't just include it on a
website: it generates multiple HTML pages to show it o� in HTML form, as well as including the plain text
original.

Miscellaneous �les can be released like so:

release file h�lenamei

Here cblorb acts as no more than a �le-copy utility; a verbatim copy of the named �le is placed in the release
folder.

P/man - The cblorb Manual x18 9

x18. Finally we come to web pages.

css

enables the use of CSS-de�ned styles within the HTML generated by cblorb. This has an especially marked
e�ect when cblorb is generating HTML versions of Inform source text, and is a good thing. Unless there is
reason not to, every blurb script generating websites ought to contain this command.

release file h�lenamei from htemplatei

causes the named �le to be found from the given template. If it can't be found in that template, cblorb tries
to �nd it from a template called \Standard". If it isn't there either, or cblorb can't �nd any template called
\Standard" in any of its template paths (see above), then an error message is produced. But if all goes well
the �le is copied into the release folder. If it has the �le extension \.html" (in lower case, and using that
exact form, i.e., not \.HTM" or some other variation) then any placeholders in the �le will be expanded with
their values. A few reserved placeholders have special e�ects, causing cblorb to expand interesting text in
their places { see Writing with Inform for more on this.

release source h�lenamei using h�lenamei from htemplatei

makes cblorb convert the Inform source text in the �rst �lename into a suite of web pages using the style of
the given �le from the given template.

website htemplatei

saves the best until last: it makes a complete website for an Inform project, using the named template. This
means that the CSS �le is copied into place (assuming css is used), the \index.html" is released from the
template, the source of the project is run through release source using \source.html" from the template
(assuming source public is used), and any extra �les speci�ed in the template's \(extras.txt)" are released
as well. See Writing with Inform for more.

x19. An optional addition for a website is to incorporate a playable-in-browser form of the story, by base64-
encoding the story �le within a Javascript wrapper, then calling an interpreter such as Parchment.

The encoding part is taken care of by:

base64 h�lenamei to h�lenamei

This performs an RFC 1113-standard encoding on the binary �le in (almost always our story �le) into a
textual base-64 �le out. The �le is topped and tailed with the text in placeholders [BASESIXTYFOURTOP] and
[BASESIXTYFOURTAIL], allowing Javascript wrapper code to surround the encoded data.

The interpreter itself is copied into place in the Release folder in a process rather like the construction of a
website from a template. The necessary blurb command is:

interpreter hinterpreter-namei hvm-letteri

Interpreter names are like template names; Inform often uses \Parchment". The VM letter should be \g" if
we need this to handle a Glulx story �le (blorbed up), or \z" if we need it to handle a Z-machine story �le.
(This needs to be said because Inform doesn't have a way of knowing which formats a given interpreter can
handle; so it has to leave checking to cblorb to do. Thus, if an Inform user tries to release a Z-machine-only
interpreter with a Glulx story �le, it's cblorb which issues the error, not Inform itself.)

P/man - The cblorb Manual x20 10

x20. Finally (really �nally this time), three commands to do with the \status" page, an HTML page
written by cblorb to report back on what it has done. If requested, this is constructed for reading within the
Inform application { it is not a valid HTML page in other contexts, and expects to have access to Javascript
functions provided by Inform, and so on.

status htemplatei h�lenamei
status alternative hlink to Inform documentationi
status instruction hlink to Inform source texti

The �rst simply requests the page to be made. It's made from a single template �le, but in exactly the same
way that website pages are generated from website templates { that is, placeholders are expanded. The
second �lename is where to write the result.

The other two commands allow Inform to insert information which cblorb otherwise has no access to: options
for fancy release tricks not currently being used (with links to the documentation on them), and links to
source text \Release along with..." sentences.

1 Services

1/main: Main.w To parse command-line arguments and take the necessary steps to obey them.

1/mem: Memory.w To allocate memory suitable for the dynamic creation of objects of di�erent sizes, placing
some larger objects automatically into doubly linked lists and assigning each a unique allocation ID number.

1/text: Text Files.w To read text �les of whatever
avour, one line at a time.

1/blurb: Blurb Parser.w To read and follow the instructions in the blurb �le, our main input.

Main 1/main

Purpose

To parse command-line arguments and take the necessary steps to obey them.

1/main.x1-8 Main; x9-10 Time; x11-13 Opening and closing banners

De�nitions

{1. We will need the following:

#include "stdlib.h"

#include "stdio.h"

#include "string.h"

#include "time.h"

#include "ctype.h"

{2. We identify which platform we're running on thus:

de�ne OSX_PLATFORM 1

de�ne WINDOWS_PLATFORM 2

de�ne UNIX_PLATFORM 3

{3. Since we use
exible-sized memory allocation, cblorb contains few hard maxima on the size or com-
plexity of its input, but:

de�ne MAX_FILENAME_LENGTH 10240 total length of pathname including leaf and extension

de�ne MAX_EXTENSION_LENGTH 32 extension part of �lename, for auxiliary �les

de�ne MAX_VAR_NAME_LENGTH 32 length of name of placeholder variable like \[AUTHOR]"

de�ne MAX_TEXT_FILE_LINE_LENGTH 51200 for any single line in the project's source text

de�ne MAX_SOURCE_TEXT_LINES 2000000000; enough for 300 copies of the Linux kernel source { plenty!

{4. Miscellaneous settings:

de�ne VERSION "cBlorb 1.2"

de�ne TRUE 1

de�ne FALSE 0

{5. The following variables record HTML and Javascript-related points where cblorb needs to behave
di�erently on the di�erent platforms. The default values here aren't actually correct for any platform as
they stand: in the main routine below, we set them as needed.

char SEP_CHAR = '/'; local �le-system �lename separator

char *FONT_TAG = "size=2"; contents of a tag

char *JAVASCRIPT_PRELUDE = "javascript:window.Project."; calling pre�x

int escape_openUrl = FALSE, escape_fileUrl = FALSE;

int reverse_slash_openUrl = FALSE, reverse_slash_fileUrl = FALSE;

1/main - Main {6 13

{6. Some global variables:

int trace_mode = FALSE; print diagnostics to stdout while running?

int error_count = 0; number of error messages produced so far

int current_year_AD = 0; e.g., 2008

int blorb_file_size = 0; size in bytes of the blorb �le written

int no_pictures_included = 0; number of picture resources included in the blorb

int no_sounds_included = 0; number of sound resources included in the blorb

int HTML_pages_created = 0; number of pages created in the website, if any

int source_HTML_pages_created = 0; number of those holding source

int use_css_code_styles = FALSE; use markings when setting code

char project_folder[MAX_FILENAME_LENGTH]; pathname of I7 project folder, if any

char release_folder[MAX_FILENAME_LENGTH]; pathname of folder for website to write, if any

char status_template[MAX_FILENAME_LENGTH]; �lename of report HTML page template, if any

char status_file[MAX_FILENAME_LENGTH]; �lename of report HTML page to write, if any

int cover_exists = FALSE; an image is speci�ed as cover art

int default_cover_used = FALSE; but it's only the default supplied by Inform

int cover_is_in_JPEG_format = TRUE; as opposed to PNG format

1/main - Main x1 14

x1. Main. Like most programs, this one parses command-line arguments, sets things up, reads the input
and then writes the output.

That's a little over-simpli�ed, though, because it also produces auxiliary outputs along the way, in the course
of parsing the blurb �le. The blorb �le is only the main output { there might also be a web page and a
solution �le, for instance.

int main(int argc, char *argv[]) {

int platform, produce_help;

char blurb_filename[MAX_FILENAME_LENGTH];

char blorb_filename[MAX_FILENAME_LENGTH];

hMake the default settings 2i;
hParse command-line arguments 3i;

start_memory();

establish_time();

initialise_placeholders();

print_banner();

if (produce_help) { hProduce help 6i; return 0; }

parse_blurb_file(blurb_filename);

write_blorb_file(blorb_filename);

create_requested_material();

print_report();

free_memory();

if (error_count > 0) return 1;

return 0;

}

The function main is where execution begins.

x2.

hMake the default settings 2i �
platform = OSX_PLATFORM;

produce_help = FALSE;

release_folder[0] = 0;

project_folder[0] = 0;

status_file[0] = 0;

status_template[0] = 0;

strcpy(blurb_filename, "Release.blurb");

strcpy(blorb_filename, "story.zblorb");

This code is used in x1.

1/main - Main x3 15

x3.

hParse command-line arguments 3i �
int arg, names;

for (arg = 1, names = 0; arg < argc; arg++) {

char *p = argv[arg];

if (strlen(p) >= MAX_FILENAME_LENGTH) {

fprintf(stderr, "cblorb: command line argument %d too long\n", arg+1);

return 1;

}

hParse an individual command-line argument 4i;
}

hSet platform-dependent HTML and Javascript variables 5i;

if (project_folder[0] != 0) {

if (names > 0) hCommand line syntax error 7i;
sprintf(blurb_filename, "%s%cRelease.blurb", project_folder, SEP_CHAR);

sprintf(blorb_filename, "%s%cBuild%coutput.zblorb", project_folder, SEP_CHAR, SEP_CHAR);

}

if (trace_mode)

printf("! Blurb in: <%s>\n! Blorb out: <%s>\n",

blurb_filename, blorb_filename);

This code is used in x1.

x4.

hParse an individual command-line argument 4i �
if (strcmp(p, "-help") == 0) { produce_help = TRUE; continue; }

if (strcmp(p, "-osx") == 0) { platform = OSX_PLATFORM; continue; }

if (strcmp(p, "-windows") == 0) { platform = WINDOWS_PLATFORM; continue; }

if (strcmp(p, "-unix") == 0) { platform = UNIX_PLATFORM; continue; }

if (strcmp(p, "-trace") == 0) { trace_mode = TRUE; continue; }

if (strcmp(p, "-project") == 0) {

arg++; if (arg == argc) hCommand line syntax error 7i;
strcpy(project_folder, argv[arg]);

continue;

}

if (p[0] == '-') hCommand line syntax error 7i;
names++;

switch (names) {

case 1: strcpy(blurb_filename, p); break;

case 2: strcpy(blorb_filename, p); break;

default: hCommand line syntax error 7i;
}

This code is used in x3.

1/main - Main x5 16

x5. Now let's set the platform-dependent variables { all of which depend only on the value of platform.

cblorb generates quite a variety of HTML, for instance to create websites, but the tricky points below a�ect
only one special page not browsed by the general public: the results page usually called StatusCblorb.html

(though this depends on how the status command is used in the blurb). The results page is intended only for
viewing within the Inform user interface, and it expects to have two Javascript functions available, openUrl
and fileUrl. Because the object structure has needed to be di�erent for the Windows and OS X user interface
implementations of Javascript, we abstract the pre�x for these function calls into the JAVASCRIPT_PRELUDE.
Thus

...

causes a link, when clicked, to call the openUrl function, where *** is the prelude; similarly for fileUrl. The
�rst opens a URL in the local operating system's default web browser, the second opens a �le (identi�ed
by a file:... URL) in the local operating system. These two URLs may need treatment to handle special
characters:

(a) \escaping", where spaces in the URL are escaped to %2520, which within a Javascript string literal
produces %20, the standard way to represent a space in a web URL;

(b) \reversing slashes", where backslashes are converted to forward slashes { useful if the separation char-
acter is a backslash, as on Windows, since backslashes are escape characters in Javascript literals.

hSet platform-dependent HTML and Javascript variables 5i �
if (platform == OSX_PLATFORM) {

FONT_TAG = "face=\"lucida grande,geneva,arial,tahoma,verdana,helvetica,helv\" size=2";

escape_openUrl = TRUE; OS X requires openUrl to escape, and fileUrl not to

}

if (platform == WINDOWS_PLATFORM) {

SEP_CHAR = '\\';

JAVASCRIPT_PRELUDE = "javascript:external.Project.";

reverse_slash_openUrl = TRUE; reverse_slash_fileUrl = TRUE;

}

This code is used in x3.

x6.

hProduce help 6i �
printf("This is cblorb, a component of Inform 7 for packaging up IF materials.\n\n");

hShow command line usage 8i;
summarise_blurb();

This code is used in x1.

x7.

hCommand line syntax error 7i �
hShow command line usage 8i;
return 1;

This code is used in x3,4.

1/main - Main x8 17

x8.

hShow command line usage 8i �
printf("usage: cblorb -platform [-options] [blurbfile [blorbfile]]\n\n");

printf(" Where -platform should be -osx (default), -windows, or -unix\n");

printf(" As an alternative to giving filenames for the blurb and blorb,\n");

printf(" -project Whatever.inform\n");

printf(" sets blurbfile and blorbfile names to the natural choices.\n");

printf(" The other possible options are:\n");

printf(" -help ... print this usage summary\n");

printf(" -trace ... print diagnostic information during run\n");

This code is used in x6,7.

x9. Time. It wouldn't be a tremendous disaster if the host OS had no access to an accurate time of day,
in fact.

time_t the_present;

struct tm *here_and_now;

void establish_time(void) {

the_present = time(NULL);

here_and_now = localtime(&the_present);

}

The function establish time is.

x10. The placeholder variable [YEAR] is initialised to the year in which cBlorb runs, according to the host
operating system, at least. (It can of course then be overridden by commands in the blurb �le, and Inform
always does this in the blurb �les it writes. But it leaves [DATESTAMP] and [TIMESTAMP] alone.)

void initialise_time_variables(void) {

char datestamp[100], infocom[100], timestamp[100];

char *weekdays[] = { "Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday" };

char *months[] = { "January", "February", "March", "April", "May", "June",

"July", "August", "September", "October", "November", "December" };

set_placeholder_to_number("YEAR", here_and_now->tm_year+1900);

sprintf(datestamp, "%s %d %s %d", weekdays[here_and_now->tm_wday],

here_and_now->tm_mday, months[here_and_now->tm_mon], here_and_now->tm_year+1900);

sprintf(infocom, "%02d%02d%02d",

here_and_now->tm_year-100, here_and_now->tm_mon + 1, here_and_now->tm_mday);

sprintf(timestamp, "%02d:%02d.%02d", here_and_now->tm_hour,

here_and_now->tm_min, here_and_now->tm_sec);

set_placeholder_to("DATESTAMP", datestamp, 0);

set_placeholder_to("INFOCOMDATESTAMP", infocom, 0);

set_placeholder_to("TIMESTAMP", timestamp, 0);

}

The function initialise time variables is called from 3/place.

1/main - Main x11 18

x11. Opening and closing banners. Note that cBlorb customarily prints informational messages with
an initial !, so that the piped output from cBlorb could be used as an Include �le in I6 code; that isn't in
fact how I7 uses cBlorb, but it's traditional for blorbing programs to do this.

void print_banner(void) {

printf("! %s [executing on %s at %s]\n",

VERSION, read_placeholder("DATESTAMP"), read_placeholder("TIMESTAMP"));

printf("! The blorb spell (safely protect a small object ");

printf("as though in a strong box).\n");

}

The function print banner is.

x12. The concluding banner is much smaller { empty if all went well, a single comment line if not. But
we also generate the status report page (if that has been requested) { a single HTML �le generated from a
template by expanding placeholders in the template. All of the meat of the report is in those placeholders,
of course; the template contains only some fancy formatting.

void print_report(void) {

if (error_count > 0) printf("! Completed: %d error(s)\n", error_count);

hSet a whole pile of placeholders which will be needed to generate the status page 13i;
if (status_template[0]) web_copy(status_template, status_file);

}

The function print report is called from 1/text.

x13. If it isn't apparent what these placeholders do, take a look at the template �le for StatusCblorb.html
in the Inform application { that's where they're used.

hSet a whole pile of placeholders which will be needed to generate the status page 13i �
if (error_count > 0) {

set_placeholder_to("CBLORBSTATUS", "Failed", 0);

set_placeholder_to("CBLORBSTATUSIMAGE", "inform:/cblorb_failed.png", 0);

set_placeholder_to("CBLORBSTATUSTEXT",

"Inform translated your source text as usual, to manufacture a 'story "

"file': all of that worked fine. But the Release then went wrong, for "

"the following reason:<p>[CBLORBERRORS]", 0

);

} else {

set_placeholder_to("CBLORBERRORS", "No problems occurred", 0);

set_placeholder_to("CBLORBSTATUS", "Succeeded", 0);

set_placeholder_to("CBLORBSTATUSIMAGE", "file://[SMALLCOVER]", 0);

set_placeholder_to("CBLORBSTATUSTEXT",

"All went well. I've put the released material into the 'Release' subfolder "

"of the Materials folder for the project: you can take a look with "

"the menu option Release > Open Materials Folder or by clicking "

"the blue folders above.<p>"

"Releases can range in size from a single blorb file to a medium-sized website. "

"Here's what we currently have:<p>", 0

);

report_requested_material("CBLORBSTATUSTEXT");

}

if (blorb_file_size > 0) {

set_placeholder_to_number("BLORBFILESIZE", blorb_file_size/1024);

1/main - Main x13 19

set_placeholder_to_number("BLORBFILEPICTURES", no_pictures_included);

set_placeholder_to_number("BLORBFILESOUNDS", no_sounds_included);

printf("! Completed: wrote blorb file of size %d bytes ", blorb_file_size);

printf("(%d picture(s), %d sound(s))\n", no_pictures_included, no_sounds_included);

} else {

set_placeholder_to_number("BLORBFILESIZE", 0);

set_placeholder_to_number("BLORBFILEPICTURES", 0);

set_placeholder_to_number("BLORBFILESOUNDS", 0);

printf("! Completed: no blorb output requested\n");

}

This code is used in x12.

Memory 1/mem

Purpose

To allocate memory suitable for the dynamic creation of objects of di�erent sizes, placing some larger objects
automatically into doubly linked lists and assigning each a unique allocation ID number.

1/mem.x3 Architecture; x4-10 Level 1: memory blocks; x11-17 Level 2: memory frames and integrity checking; x18-19 Level 3:

managing linked lists of allocated objects; x20-21 Allocator functions created by macros; x22 Expanding many macros

De�nitions

{1. This section is slightly simpli�ed, but essentially copied, from the memory allocator used in the main
Inform 7 compiler.

It allocates memory as needed to store the numerous objects of di�erent sizes, all typedef'd structs. There's
no garbage collection because nothing is ever destroyed. Each type has its own doubly-linked list, and in
each type the objects created are given unique IDs (within that type) counting upwards from 0.

{2. Before going much further, we will need to anticipate what the memory manager wants. In order to
keep the doubly linked lists and the allocation ID, every structure subject to this regime will need extra
elements holding the necessary links and ID number. We de�ne these elements with a macro (concealing its
meaning from all other sections).

Smaller objects are stored in arrays, and their structure declarations do not use the following macro.

de�ne MEMORY_MANAGEMENT

int allocation_id; Numbered from 0 upwards in creation order

void *next_structure; Next object in double-linked list

void *prev_structure; Previous object in double-linked list

{3. There is no signi�cance to the order in which structures are registered with the memory system, but
NO_MEMORY_TYPESmust be 1 more than the highest MT number, so do not add to this list without incrementing
it. There can in principle be up to 1000 memory types.

de�ne auxiliary_file_MT 0

de�ne skein_node_MT 1

de�ne chunk_metadata_MT 2

de�ne placeholder_MT 3

de�ne heading_MT 4

de�ne table_MT 5

de�ne segment_MT 6

de�ne request_MT 7

de�ne template_MT 8

de�ne template_path_MT 9

de�ne NO_MEMORY_TYPES 10 must be 1 more than the highest _MT constant above

1/mem - Memory x1 21

x1. For each type of object to be allocated, a single structure of the following design is maintained. Types
which are allocated individually, like world objects, have no_allocated_together set to 1, and the doubly
linked list is of the objects themselves. For types allocated in small arrays (typically of 100 objects at a
time), no_allocated_together is set to the number of objects in each completed array (so, typically 100) and
the doubly linked list is of the arrays.

typedef struct allocation_status_structure {

actually needed for allocation purposes:

int objects_allocated; total number of objects (or arrays) ever allocated

void *first_in_memory; head of doubly linked list

void *last_in_memory; tail of doubly linked list

used only to provide statistics for the debugging log:

char *name_of_type; e.g., "lexicon_entry_MT"

int bytes_allocated; total allocation for this type of object, not counting overhead

int objects_count; total number currently in existence (i.e., undeleted)

int no_allocated_together; number of objects in each array of this type of object

} allocation_status_structure;

The structure allocation status structure is private to this section.

x2. The memory allocator itself needs some memory, but only a �xed-size and fairly small array of the
structures de�ned above. The allocator can safely begin as soon as this is initialised.

allocation_status_structure alloc_status[NO_MEMORY_TYPES];

void start_memory(void) {

int i;

for (i=0; i<NO_MEMORY_TYPES; i++) {

alloc_status[i].first_in_memory = NULL;

alloc_status[i].last_in_memory = NULL;

alloc_status[i].objects_allocated = 0;

alloc_status[i].objects_count = 0;

alloc_status[i].bytes_allocated = 0;

alloc_status[i].no_allocated_together = 1;

alloc_status[i].name_of_type = "unused";

}

}

The function start memory is called from 1/main.

x3. Architecture. The memory manager is built in three levels, with its interface to the rest of cblorb
being entirely at level 3 (except that when it shuts down it calls a level 1 routine to free everything). Each
level uses the one below it.

(3) Managing linked lists of large objects, within which objects can be created at any point, and from which
objects can be deleted; and providing a way to create new small objects of any given type.

(2) Allocating some thousands of memory frames, each holding one large object or an array of small objects.
(1) Allocating and freeing a few dozen large blocks of contiguous memory.

1/mem - Memory x4 22

x4. Level 1: memory blocks. Memory is allocated in blocks of 100K, within which objects are allocated
as needed. The \safety margin" is the number of spare bytes left blank at the end of each object: this is done
because we want to be paranoid about compilers on di�erent architectures aligning structures to di�erent
boundaries (multiples of 4, 8, 16, etc.). Each block also ends with a �rebreak of zeroes, which ought never
to be touched: we want to minimise the chance of a mistake causing a memory exception which crashes the
compiler, because if that happens it will be di�cult to recover the circumstances from the debugging log.

de�ne SAFETY_MARGIN 64

de�ne BLANK_END_SIZE 128

x5. At present MEMORY_GRANULARITY is 100K. This is the quantity of memory allocated by each individual
malloc call.

After MAX_BLOCKS_ALLOWED blocks, we throw in the towel: we must have fallen into an endless loop which
creates endless new objects somewhere. (If this ever happens, it would be a bug: the point of this mechanism
is to be able to recover. Without this safety measure, OS X in particular would grind slowly to a halt, never
refusing a malloc, until the user was unable to get the GUI responsive enough to kill the process.)

de�ne MAX_BLOCKS_ALLOWED 15000

de�ne MEMORY_GRANULARITY 100*1024*4 which must be divisible by 1024

int no_blocks_allocated = 0;

int total_objects_allocated = 0; a much larger number, used only for the debugging log

x6. Memory blocks are stored in a linked list, and we keep track of the size of the current block: that is,
the block at the tail of the list. Each memory block consists of a header structure, followed by SAFETY_MARGIN

null bytes, followed by actual data.

typedef struct memblock_header {

int block_number;

struct memblock_header *next;

char *the_memory;

} memblock_header;

memblock_header *first_memblock_header = NULL; head of list of memory blocks

memblock_header *current_memblock_header = NULL; tail of list of memory blocks

int used_in_current_memblock = 0; number of bytes so far used in the tail memory block

The structure memblock header is private to this section.

x7. The actual allocation and deallocation is performed by the following pair of routines.

void allocate_another_block(void) {

unsigned char *cp;

memblock_header *mh;

hAllocate and zero out a block of memory, making cp point to it 8i;

mh = (memblock_header *) cp;

used_in_current_memblock = sizeof(memblock_header) + SAFETY_MARGIN;

mh->the_memory = (void *) (cp + used_in_current_memblock);

hAdd new block to the tail of the list of memory blocks 9i;
}

The function allocate another block is.

1/mem - Memory x8 23

x8. Note that cp and mh are set to the same value: they merely have di�erent pointer types as far as the C
compiler is concerned.

hAllocate and zero out a block of memory, making cp point to it 8i �
int i;

if (no_blocks_allocated++ >= MAX_BLOCKS_ALLOWED)

fatal(

"the memory manager has halted cblorb, which seems to be generating "

"endless structures. Presumably it is trapped in a loop");

check_memory_integrity();

cp = (unsigned char *) (malloc(MEMORY_GRANULARITY));

if (cp == NULL) fatal("Run out of memory: malloc failed");

for (i=0; i<MEMORY_GRANULARITY; i++) cp[i] = 0;

This code is used in x7.

x9. As can be seen, memory block numbers count upwards from 0 in order of their allocation.

hAdd new block to the tail of the list of memory blocks 9i �
if (current_memblock_header == NULL) {

mh->block_number = 0;

first_memblock_header = mh;

} else {

mh->block_number = current_memblock_header->block_number + 1;

current_memblock_header->next = mh;

}

current_memblock_header = mh;

This code is used in x7.

x10. Freeing all this memory again is just a matter of freeing each block in turn, but of course being careful
to avoid following links in a just-freed block.

void free_memory(void) {

memblock_header *mh = first_memblock_header;

while (mh != NULL) {

memblock_header *next_mh = mh->next;

void *p = (void *) mh;

free(p);

mh = next_mh;

}

}

The function free memory is called from 1/main.

1/mem - Memory x11 24

x11. Level 2: memory frames and integrity checking. Within these extensive blocks of contiguous
memory, we place the actual objects in between \memory frames", which are only used at present to police
the integrity of memory: again, �nding obscure and irritating memory-corruption bugs is more important
to us than saving bytes. Each memory frame wraps either a single large object, or a single array of small
objects.

de�ne INTEGRITY_NUMBER 0x12345678 a value unlikely to be in memory just by chance

typedef struct memory_frame {

int integrity_check; this should always contain the INTEGRITY_NUMBER

struct memory_frame *next_frame; next frame in the list of memory frames

int mem_type; type of object stored in this frame

int allocation_id; allocation ID number of object stored in this frame

} memory_frame;

The structure memory frame is private to this section.

x12. There is a single linked list of all the memory frames, perhaps of about 10000 entries in length,
beginning here. (These frames live in di�erent memory blocks, but we don't need to worry about that.)

memory_frame *first_memory_frame = NULL; earliest memory frame ever allocated

memory_frame *last_memory_frame = NULL; most recent memory frame allocated

x13. If the integrity numbers of every frame are still intact, then it is pretty unlikely that any bug has
caused memory to overwrite one frame into another. check_memory_integrity might on very large runs be
run often, if we didn't prevent this: since the number of calls would be roughly proportional to memory
usage, we would implicitly have an O(n2) running time in the amount of storage n allocated.

int calls_to_cmi = 0;

void check_memory_integrity(void) {

int c;

memory_frame *mf;

c = calls_to_cmi++;

if (!((c<10) || (c == 100) || (c == 1000) || (c == 10000))) return;

for (c = 0, mf = first_memory_frame; mf; c++, mf = mf->next_frame)

if (mf->integrity_check != INTEGRITY_NUMBER)

fatal("Memory manager failed integrity check");

}

void debug_memory_frames(int from, int to) {

int c;

memory_frame *mf;

for (c = 0, mf = first_memory_frame; (mf) && (c <= to); c++, mf = mf->next_frame)

if (c >= from) {

char *desc = "corrupt";

if (mf->integrity_check == INTEGRITY_NUMBER)

desc = alloc_status[mf->mem_type].name_of_type;

}

}

The function check memory integrity is.

The function debug memory frames is.

1/mem - Memory x14 25

x14. We have seen how memory is allocated in large blocks, and that a linked list of memory frames will
live inside those blocks; we have seen how the list is checked for integrity; but we not seen how it is built.
Every memory frame is created by the following function:

void *allocate_mem(int mem_type, int extent) {

unsigned char *cp;

memory_frame *mf;

int bytes_free_in_current_memblock, extent_without_overheads = extent;

extent += sizeof(memory_frame); each allocation is preceded by a memory frame

extent += SAFETY_MARGIN; each allocation is followed by SAFETY_MARGIN null bytes

hEnsure that the current memory block has room for this many bytes 15i;

cp = ((unsigned char *) (current_memblock_header->the_memory)) + used_in_current_memblock;

used_in_current_memblock += extent;

mf = (memory_frame *) cp; the new memory frame,

cp = cp + sizeof(memory_frame); following which is the actual allocated data

mf->integrity_check = INTEGRITY_NUMBER;

mf->allocation_id = alloc_status[mem_type].objects_allocated;

mf->mem_type = mem_type;

hAdd the new memory frame to the big linked list of all frames 16i;
hUpdate the allocation status for this type of object 17i;

total_objects_allocated++;

return (void *) cp;

}

The function allocate mem is.

x15. The granularity error below will be triggered the �rst time a particular object type is allocated. So
this is not a potential time-bomb just waiting for a user with a particularly long and involved source text to
discover.

hEnsure that the current memory block has room for this many bytes 15i �
if (current_memblock_header == NULL) allocate_another_block();

bytes_free_in_current_memblock = MEMORY_GRANULARITY - (used_in_current_memblock + extent);

if (bytes_free_in_current_memblock < BLANK_END_SIZE) {

allocate_another_block();

if (extent+BLANK_END_SIZE >= MEMORY_GRANULARITY)

fatal("Memory manager failed because granularity too low");

}

This code is used in x14.

x16. New memory frames are added to the tail of the list:

hAdd the new memory frame to the big linked list of all frames 16i �
mf->next_frame = NULL;

if (first_memory_frame == NULL) first_memory_frame = mf;

else last_memory_frame->next_frame = mf;

last_memory_frame = mf;

This code is used in x14.

1/mem - Memory x17 26

x17. See the de�nition of alloc_status above.

hUpdate the allocation status for this type of object 17i �
if (alloc_status[mem_type].first_in_memory == NULL)

alloc_status[mem_type].first_in_memory = (void *) cp;

alloc_status[mem_type].last_in_memory = (void *) cp;

alloc_status[mem_type].objects_allocated++;

alloc_status[mem_type].bytes_allocated += extent_without_overheads;

This code is used in x14.

x18. Level 3: managing linked lists of allocated objects. We de�ne macros which look as if they are
functions, but for which one argument is the name of a type: expanding these macros provides suitable C
functions to handle each possible type. These macros provide the interface through which all other sections
of cblorb allocate and leaf through memory.

Note that inweb allows multi-line macro de�nitions without backslashes to continue them, unlike ordinary C.
Otherwise these are \standard" macros, though this was my �rst brush with the ## concatenation operator:
basically CREATE(thing) expands into (allocate_thing()) because of the ##. (See Kernighan and Ritchie,
section 4.11.2.)

de�ne CREATE(type_name) (allocate_##type_name())

de�ne CREATE_BEFORE(existing, type_name) (allocate_##type_name##_before(existing))

de�ne DESTROY(this, type_name) (deallocate_##type_name(this))

de�ne FIRST_OBJECT(type_name) ((type_name *) alloc_status[type_name##_MT].first_in_memory)

de�ne LAST_OBJECT(type_name) ((type_name *) alloc_status[type_name##_MT].last_in_memory)

de�ne NEXT_OBJECT(this, type_name) ((type_name *) (this->next_structure))

de�ne PREV_OBJECT(this, type_name) ((type_name *) (this->prev_structure))

de�ne NUMBER_CREATED(type_name) (alloc_status[type_name##_MT].objects_count)

x19. The following macros are widely used (well, the �rst one is, anyway) for looking through the double
linked list of existing objects of a given type.

de�ne LOOP_OVER(var, type_name)

for (var=FIRST_OBJECT(type_name); var != NULL; var = NEXT_OBJECT(var, type_name))

de�ne LOOP_BACKWARDS_OVER(var, type_name)

for (var=LAST_OBJECT(type_name); var != NULL; var = PREV_OBJECT(var, type_name))

1/mem - Memory x20 27

x20. Allocator functions created by macros. The following macros generate a family of systematically
named functions. For instance, we shall shortly expand ALLOCATE_INDIVIDUALLY(parse_node), which will
expand to three functions: allocate_parse_node, deallocate_parse_node and allocate_parse_node_before.

Quaintly, #type_name expands into the value of type_name put within double-quotes.

de�ne NEW_OBJECT(type_name) ((type_name *) allocate_mem(type_name##_MT, sizeof(type_name)))

de�ne ALLOCATE_INDIVIDUALLY(type_name)

type_name *allocate_##type_name(void) {

alloc_status[type_name##_MT].name_of_type = #type_name;

type_name *prev_obj = LAST_OBJECT(type_name);

type_name *new_obj = NEW_OBJECT(type_name);

new_obj->allocation_id = alloc_status[type_name##_MT].objects_allocated-1;

new_obj->next_structure = NULL;

if (prev_obj != NULL)

prev_obj->next_structure = (void *) new_obj;

new_obj->prev_structure = prev_obj;

alloc_status[type_name##_MT].objects_count++;

return new_obj;

}

void deallocate_##type_name(type_name *kill_me) {

type_name *prev_obj = PREV_OBJECT(kill_me, type_name);

type_name *next_obj = NEXT_OBJECT(kill_me, type_name);

if (prev_obj == NULL) {

alloc_status[type_name##_MT].first_in_memory = next_obj;

} else {

prev_obj->next_structure = next_obj;

}

if (next_obj == NULL) {

alloc_status[type_name##_MT].last_in_memory = prev_obj;

} else {

next_obj->prev_structure = prev_obj;

}

alloc_status[type_name##_MT].objects_count--;

}

type_name *allocate_##type_name##_before(type_name *existing) {

type_name *new_obj = allocate_##type_name();

deallocate_##type_name(new_obj);

new_obj->prev_structure = existing->prev_structure;

if (existing->prev_structure != NULL)

((type_name *) existing->prev_structure)->next_structure = new_obj;

else alloc_status[type_name##_MT].first_in_memory = (void *) new_obj;

new_obj->next_structure = existing;

existing->prev_structure = new_obj;

alloc_status[type_name##_MT].objects_count++;

return new_obj;

}

1/mem - Memory x21 28

x21. ALLOCATE_IN_ARRAYS is still more obfuscated. When we ALLOCATE_IN_ARRAYS(X, 100), the result will
be de�nitions of a new type X_block and functions allocate_X, allocate_X_block, deallocate_X_block and
allocate_X_block_before (though the last is not destined ever to be used). Note that we are not provided
with the means to deallocate individual objects this time: that's the trade-o� for allocating in blocks.

de�ne ALLOCATE_IN_ARRAYS(type_name, NO_TO_ALLOCATE_TOGETHER)

typedef struct type_name##_array {

int used;

struct type_name array[NO_TO_ALLOCATE_TOGETHER];

MEMORY_MANAGEMENT

} type_name##_array;

ALLOCATE_INDIVIDUALLY(type_name##_array)

type_name##_array *next_##type_name##_array = NULL;

struct type_name *allocate_##type_name(void) {

if ((next_##type_name##_array == NULL) ||

(next_##type_name##_array->used >= NO_TO_ALLOCATE_TOGETHER)) {

alloc_status[type_name##_array_MT].no_allocated_together = NO_TO_ALLOCATE_TOGETHER;

next_##type_name##_array = allocate_##type_name##_array();

next_##type_name##_array->used = 0;

}

return &(next_##type_name##_array->array[

next_##type_name##_array->used++]);

}

The structure type name## array is private to this section.

x22. Expanding many macros. Each given structure must have a typedef name, say marvel, and can
be used in one of two ways. Either way, we can obtain a new one with the macro CREATE(marvel).

Either (a) it will be individually allocated. In this case marvel_MT should be de�ned with a new MT (memory
type) number, and the macro ALLOCATE_INDIVIDUALLY(marvel) should be expanded. The �rst and last objects
created will be FIRST_OBJECT(marvel) and LAST_OBJECT(marvel), and we can proceed either way through a
double linked list of them with PREV_OBJECT(mv, marvel) and NEXT_OBJECT(mv, marvel). For convenience, we
can loop through marvels, in creation order, using LOOP_OVER(var, marvel), which expands to a for loop in
which the variable var runs through each created marvel in turn; or equally we can run backwards through
using LOOP_BACKWARDS_OVER(var, marvel). In addition, there are corruption checks to protect the memory
from overrunning accidents, and the structure can be used as a value in the symbols table. Good for large
structures with signi�cant semantic content.

Or (b) it will be allocated in arrays. Once again we can obtain new marvels with CREATE(marvel). This is more
e�cient both in speed and memory usage, but we lose the ability to loop through the objects. For this arrange-
ment, de�ne marvel_array_MT with a new MT number and expand the macro ALLOCATE_IN_ARRAYS(marvel,

100), where 100 (or what may you) is the number of objects allocated jointly as a block. Good for small
structures used in the lower levels.

Here goes, then.

ALLOCATE_INDIVIDUALLY(auxiliary_file)

ALLOCATE_INDIVIDUALLY(skein_node)

ALLOCATE_INDIVIDUALLY(chunk_metadata)

ALLOCATE_INDIVIDUALLY(placeholder)

ALLOCATE_INDIVIDUALLY(heading)

ALLOCATE_INDIVIDUALLY(table)

ALLOCATE_INDIVIDUALLY(segment)

ALLOCATE_INDIVIDUALLY(request)

ALLOCATE_INDIVIDUALLY(template)

ALLOCATE_INDIVIDUALLY(template_path)

Text Files 1/text

Purpose

To read text �les of whatever
avour, one line at a time.

1/text.x1-3 Text �le positions; x4-5 Error messages; x6-11 File handling; x12-14 Two string utilities; x15 Other �le utilities

De�nitions

{1.

typedef struct text_file_position {

char text_file_filename[MAX_FILENAME_LENGTH];

int line_count;

int line_position;

int skip_terminator;

int actively_scanning; whether we are still interested in the rest of the �le

} text_file_position;

The structure text �le position is private to this section.

x1. Text �le positions. This is useful for error messages:

void describe_file_position(char *t, text_file_position *tfp) {

*t = 0;

if (tfp == NULL) return;

sprintf(t, "%s, line %d: ", tfp->text_file_filename, tfp->line_count);

}

The function describe �le position is.

x2.

int tfp_get_line_count(text_file_position *tfp) {

if (tfp == NULL) return 0;

return tfp->line_count;

}

The function tfp get line count is called from 1/blurb and 3/web.

x3.

void tfp_lose_interest(text_file_position *tfp) {

tfp->actively_scanning = FALSE;

}

The function tfp lose interest is called from 3/web.

1/text - Text Files x4 30

x4. Error messages. cBlorb is only minimally helpful when diagnosing problems, because it's intended
to be used as the back end of a system which only generates correct blurb �les, so that everything will work
{ ideally, the Inform user will never know that cBlorb exists.

text_file_position *error_position = NULL;

void set_error_position(text_file_position *tfp) {

error_position = tfp;

}

void error(char *erm) {

char err[MAX_FILENAME_LENGTH];

describe_file_position(err, error_position);

sprintf(err+strlen(err), "Error: %s\n", erm);

spool_error(err);

}

void error_1(char *erm, char *s) {

char err[MAX_FILENAME_LENGTH];

describe_file_position(err, error_position);

sprintf(err+strlen(err), "Error: %s: '%s'\n", erm, s);

spool_error(err);

}

void errorf_1s(char *erm, char *s1) {

char err[MAX_FILENAME_LENGTH];

sprintf(err, erm, s1);

spool_error(err);

}

void errorf_2s(char *erm, char *s1, char *s2) {

char err[MAX_FILENAME_LENGTH];

sprintf(err, erm, s1, s2);

spool_error(err);

}

void fatal(char *erm) {

char err[MAX_FILENAME_LENGTH];

describe_file_position(err, error_position);

sprintf(err+strlen(err), "Fatal error: %s\n", erm);

spool_error(err);

print_report();

exit(1);

}

void fatal_fs(char *erm, char *fn) {

char err[MAX_FILENAME_LENGTH];

describe_file_position(err, error_position);

sprintf(err+strlen(err), "Fatal error: %s: filename '%s'\n", erm, fn);

spool_error(err);

print_report();

exit(1);

}

void warning_fs(char *erm, char *fn) {

char err[MAX_FILENAME_LENGTH];

describe_file_position(err, error_position);

fprintf(stderr, "%sWarning: %s: filename '%s'\n", err, erm, fn);

}

1/text - Text Files x5 31

The function set error position is called from 1/blurb.

The function error is called from 1/main, 1/blurb, 3/sol, 3/links and 3/place.

The function error 1 is called from 1/blurb, 3/rel and 3/web.

The function errorf 1s is called from 3/rel and 3/templ.

The function errorf 2s is called from 3/rel.

The function fatal is called from 1/mem, 1/blurb, 2/blorb and 3/web.

The function fatal fs is called from 2/blorb, 3/sol and 3/b64.

The function warning fs is.

x5. Errors are spooled to a placeholder, for the bene�t of the report:

void spool_error(char *err) {

append_to_placeholder("CBLORBERRORS", "");

append_to_placeholder("CBLORBERRORS", err);

append_to_placeholder("CBLORBERRORS", "");

fprintf(stderr, "%s", err);

error_count++;

}

The function spool error is.

x6. File handling. We read lines in, delimited by any of the standard line-ending characters, and send
them one at a time to a function called iterator.

void file_read(char *filename, char *message, int serious,

void (iterator)(char *, text_file_position *), text_file_position *start_at) {

FILE *HANDLE;

text_file_position tfp;

hOpen the text �le 7i;
hSet the initial position, seeking it in the �le if need be 8i;
hRead in lines and send them one by one to the iterator 9i;
fclose(HANDLE);

}

The function �le read is called from 1/blurb, 3/rel, 3/sol and 3/web.

x7.

hOpen the text �le 7i �
if (strlen(filename) >= MAX_FILENAME_LENGTH) {

if (serious) fatal_fs("filename too long", filename);

error_1("filename too long", filename);

return;

}

HANDLE = fopen(filename, "r");

if (HANDLE == NULL) {

if (message == NULL) return;

if (serious) fatal_fs(message, filename);

else { error_1(message, filename); return; }

}

This code is used in x6.

1/text - Text Files x8 32

x8. The ANSI de�nition of ftell and fseek says that, with text �les, the only de�nite position value is 0 {
meaning the beginning of the �le { and this is what we initialise line_position to. We must otherwise only
write values returned by ftell into this �eld.

hSet the initial position, seeking it in the �le if need be 8i �
if (start_at == NULL) {

tfp.line_count = 1;

tfp.line_position = 0;

tfp.skip_terminator = 'X';

} else {

tfp = *start_at;

if (fseek(HANDLE, (long int) (tfp.line_position), SEEK_SET)) {

if (serious) fatal_fs("unable to seek position in file", filename);

error_1("unable to seek position in file", filename);

return;

}

}

tfp.actively_scanning = TRUE;

strcpy(tfp.text_file_filename, filename);

This code is used in x6.

x9. We aim to get this right whether the lines are terminated by 0A, 0D, 0A 0D or 0D 0A. The �nal line is
not required to be terminated.

hRead in lines and send them one by one to the iterator 9i �
char line[MAX_TEXT_FILE_LINE_LENGTH+1];

int i = 0, c = ' ';

int warned = FALSE;

while ((c != EOF) && (tfp.actively_scanning)) {

c = fgetc(HANDLE);

if ((c == EOF) || (c == '\x0a') || (c == '\x0d')) {

line[i] = 0;

if ((i > 0) || (c != tfp.skip_terminator)) {

hFeed the completed line to the iterator routine 10i;
if (c == '\x0a') tfp.skip_terminator = '\x0d';

if (c == '\x0d') tfp.skip_terminator = '\x0a';

} else tfp.skip_terminator = 'X';

hUpdate the text �le position 11i;
i = 0;

} else {

if (i < MAX_TEXT_FILE_LINE_LENGTH) line[i++] = (char) c;

else {

if (serious) fatal_fs("line too long", filename);

if (warned == FALSE) {

warning_fs("line too long (truncating it)", filename);

warned = TRUE;

}

}

}

}

if ((i > 0) && (tfp.actively_scanning))

hFeed the completed line to the iterator routine 10i;

This code is used in x6.

1/text - Text Files x10 33

x10. We update the line counter only when a line is actually sent:

hFeed the completed line to the iterator routine 10i �
iterator(line, &tfp);

tfp.line_count++;

This code is used in x9.

x11. But we update the text �le position after every apparent line terminator. This is because we might
otherwise, on a Windows text �le, end up with an ftell position in between the CR and the LF; if we resume at
that point, later on, we'll then have an o�-by-one error in the line numbering in the resumption as compared
to during the original pass.

Properly speaking, ftell returns a long int, not an int, but on a 32-bit integer machine { which Inform
requires { this gives us room for �les to run to 2GB. Text �les seldom come that large.

hUpdate the text �le position 11i �
tfp.line_position = (int) (ftell(HANDLE));

if (tfp.line_position == -1) {

if (serious) fatal_fs("unable to determine position in file", filename);

error_1("unable to determine position in file", filename);

}

This code is used in x9.

x12. Two string utilities.

char *trim_white_space(char *original) {

int i;

for (i=0; white_space(original[i]); i++) ;

original += i;

for (i=strlen(original)-1; ((i>=0) && (white_space(original[i]))); i--)

original[i] = 0;

return original;

}

The function trim white space is called from 1/blurb and 3/rel.

x13.

void extract_word(char *fword, char *line, int size, int word) {

int i = 0;

fword[0] = 0;

while (word > 0) {

word--;

while (white_space(line[i])) i++;

int j = 0;

while ((line[i]) && (!white_space(line[i]))) {

if (j < size-1) fword[j++] = tolower(line[i]);

i++;

}

fword[j] = 0;

if (line[i] == 0) break;

}

if (word > 0) fword[0] = 0;

}

The function extract word is called from 3/web.

1/text - Text Files x14 34

x14. Where we de�ne white space as spaces and tabs only:

int white_space(int c) { if ((c == ' ') || (c == '\t')) return TRUE; return FALSE; }

The function white space is.

x15. Other �le utilities. Although this section is called \Text Files", it also has a couple of general-
purpose �le utilities:

char *get_filename_extension(char *filename) {

int i = strlen(filename) - 1;

while ((i>=0) && (filename[i] != '.') && (filename[i] != SEP_CHAR)) i--;

if ((i<0) || (filename[i] == SEP_CHAR)) return filename + strlen(filename);

return filename + i;

}

char *get_filename_leafname(char *filename) {

int i = strlen(filename) - 1;

while ((i>=0) && (filename[i] != SEP_CHAR)) i--;

return filename + i + 1;

}

int file_exists(char *filename) {

FILE *TEST = fopen(filename, "r");

if (TEST) { fclose(TEST); return TRUE; }

return FALSE;

}

long int file_size(char *filename) {

FILE *TEST_FILE = fopen(filename, "rb");

if (TEST_FILE) {

if (fseek(TEST_FILE, 0, SEEK_END) == 0) {

long int file_size = ftell(TEST_FILE);

if (file_size == -1L) fatal_fs("ftell failed on linked file", filename);

fclose(TEST_FILE);

return file_size;

} else fatal_fs("fseek failed on linked file", filename);

fclose(TEST_FILE);

}

return -1L;

}

int copy_file(char *from, char *to, int suppress_error) {

if ((from == NULL) || (to == NULL) || (strcmp(from, to) == 0))

fatal("files confused in copier");

FILE *FROM = fopen(from, "rb");

if (FROM == NULL) {

if (suppress_error == FALSE) fatal_fs("unable to read file", from);

return -1;

}

FILE *TO = fopen(to, "wb");

if (TO == NULL) {

fatal_fs("unable to write to file", to);

return -1;

}

int size = 0;

1/text - Text Files x15 35

while (TRUE) {

int c = fgetc(FROM);

if (c == EOF) break;

size++;

putc(c, TO);

}

fclose(FROM); fclose(TO);

return size;

}

The function get �lename extension is called from 2/blorb, 3/rel and 3/links.

The function get �lename leafname is called from 1/blurb, 3/links and 3/web.

The function �le exists is called from 3/templ.

The function �le size is called from 2/blorb and 3/links.

The function copy �le is called from 3/rel.

Blurb Parser 1/blurb

Purpose

To read and follow the instructions in the blurb �le, our main input.

1/blurb.x1-5 Reading the �le; x6 Summary; x7-13 The interpreter

x1. Reading the �le. We divide the �le into blurb commands at line breaks, so:

void parse_blurb_file(char *in) {

file_read(in, "can't open blurb file", TRUE, interpret, 0);

set_error_position(NULL);

}

The function parse blurb �le is called from 1/main.

x2. The sequence of values enumerated here must correspond exactly to indexes into the syntaxes table
below.

de�ne author_COMMAND 0

de�ne auxiliary_COMMAND 1

de�ne base64_COMMAND 2

de�ne copyright_COMMAND 3

de�ne cover_COMMAND 4

de�ne css_COMMAND 5

de�ne ifiction_COMMAND 6

de�ne ifiction_public_COMMAND 7

de�ne ifiction_file_COMMAND 8

de�ne interpreter_COMMAND 9

de�ne palette_COMMAND 10

de�ne palette_16_bit_COMMAND 11

de�ne palette_32_bit_COMMAND 12

de�ne picture_scaled_COMMAND 13

de�ne picture_COMMAND 14

de�ne placeholder_COMMAND 15

de�ne project_folder_COMMAND 16

de�ne release_COMMAND 17

de�ne release_file_COMMAND 18

de�ne release_file_from_COMMAND 19

de�ne release_source_COMMAND 20

de�ne release_to_COMMAND 21

de�ne resolution_max_COMMAND 22

de�ne resolution_min_max_COMMAND 23

de�ne resolution_min_COMMAND 24

de�ne resolution_COMMAND 25

de�ne solution_COMMAND 26

de�ne solution_public_COMMAND 27

de�ne sound_music_COMMAND 28

de�ne sound_repeat_COMMAND 29

de�ne sound_forever_COMMAND 30

de�ne sound_song_COMMAND 31

de�ne sound_COMMAND 32

1/blurb - Blurb Parser x3 37

de�ne source_COMMAND 33

de�ne source_public_COMMAND 34

de�ne status_COMMAND 35

de�ne status_alternative_COMMAND 36

de�ne status_instruction_COMMAND 37

de�ne storyfile_include_COMMAND 38

de�ne storyfile_COMMAND 39

de�ne storyfile_leafname_COMMAND 40

de�ne template_path_COMMAND 41

de�ne website_COMMAND 42

x3. A single number specifying various possible combinations of operands:

de�ne OPS_NO 1

de�ne OPS_1TEXT 2

de�ne OPS_2TEXT 3

de�ne OPS_1NUMBER 4

de�ne OPS_2NUMBER 5

de�ne OPS_1NUMBER_1TEXT 6

de�ne OPS_1NUMBER_2TEXTS 7

de�ne OPS_1NUMBER_1TEXT_1NUMBER 8

de�ne OPS_3NUMBER 9

de�ne OPS_3TEXT 10

x4. Each legal command syntax is stored as one of these structures. We will be parsing commands using
the C library function sscanf, which is a little idiosyncratic. It is, in particular, not easy to �nd out whether
sscanf successfully matched the whole text, since it returns only the number of variable elements matched,
so that it can't tell the di�erence between do %n and do %n quickly, say. The text \do 12" would match
against both and return 1 in each case. To get around this, we end the prototype with a spurious " %n".
The space can match against arbitrary white space, including none at all, and %n is not strictly a match {
instead it sets the number of characters from the original command which have been matched. It would be
nice to use sscanf's return value to test whether the %n has been reached, but this is unsafe because the
sscanf speci�cation is ambiguous as to whether or not a %n counts towards the return value; the man page
openly admits that people aren't sure whether it does or doesn't. So we ignore the return value of sscanf as
meaningless, and instead test the value set by %n to see if it's the length of the original text.

typedef struct blurb_command {

char *explicated; plain English form of the command

char *prototype; sscanf prototype

int operands; one of the above OPS_* codes

int deprecated;

} blurb_command;

The structure blurb command is private to this section.

1/blurb - Blurb Parser x5 38

x5. And here they all are. They are tested in the sequence given, and the sequence must exactly match
the numbering of the *_COMMAND values above, since those are indexes into this table.

In blurb syntax, a line whose �rst non-white-space character is an exclamation mark ! is a comment, and is
ignored. (This is the I6 comment character, too.) It appears in the table as a command but, as we shall see,
has no e�ect.

blurb_command syntaxes[] = {

{ "author \"name\"", "author \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "auxiliary \"filename\" \"description\"",

"auxiliary \"%[^\"]\" \"%[^\"]\" %n", OPS_2TEXT, FALSE },

{ "base64 \"filename\" to \"filename\"",

"base64 \"%[^\"]\" to \"%[^\"]\" %n", OPS_2TEXT, FALSE },

{ "copyright \"message\"", "copyright \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "cover \"filename\"", "cover \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "css", "css %n", OPS_NO, FALSE },

{ "ifiction", "ifiction %n", OPS_NO, FALSE },

{ "ifiction public", "ifiction public %n", OPS_NO, FALSE },

{ "ifiction \"filename\" include", "ifiction \"%[^\"]\" include %n", OPS_1TEXT, FALSE },

{ "interpreter \"interpreter-name\" \"vm-letter\"",

"interpreter \"%[^\"]\" \"%[gz]\" %n", OPS_2TEXT, FALSE },

{ "palette { details }", "palette {%[^}]} %n", OPS_1TEXT, TRUE },

{ "palette 16 bit", "palette 16 bit %n", OPS_NO, TRUE },

{ "palette 32 bit", "palette 32 bit %n", OPS_NO, TRUE },

{ "picture N \"filename\" scale ...",

"picture %d \"%[^\"]\" scale %s %n", OPS_1NUMBER_2TEXTS, TRUE },

{ "picture N \"filename\"", "picture %d \"%[^\"]\" %n", OPS_1NUMBER_1TEXT, FALSE },

{ "placeholder [name] = \"text\"", "placeholder [%[A-Z]] = \"%[^\"]\" %n", OPS_2TEXT, FALSE },

{ "project folder \"pathname\"", "project folder \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "release \"text\"", "release \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "release file \"filename\"", "release file \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "release file \"filename\" from \"template\"",

"release file \"%[^\"]\" from \"%[^\"]\" %n", OPS_2TEXT, FALSE },

{ "release source \"filename\" using \"filename\" from \"template\"",

"release source \"%[^\"]\" using \"%[^\"]\" from \"%[^\"]\" %n", OPS_3TEXT, FALSE },

{ "release to \"pathname\"", "release to \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "resolution NxN max NxN", "resolution %d max %d %n", OPS_2NUMBER, TRUE },

{ "resolution NxN min NxN max NxN", "resolution %d min %d max %d %n", OPS_3NUMBER, TRUE },

{ "resolution NxN min NxN", "resolution %d min %d %n", OPS_2NUMBER, TRUE },

{ "resolution NxN", "resolution %d %n", OPS_1NUMBER, TRUE },

{ "solution", "solution %n", OPS_NO, FALSE },

{ "solution public", "solution public %n", OPS_NO, FALSE },

{ "sound N \"filename\" music", "sound %d \"%[^\"]\" music %n", OPS_1NUMBER_1TEXT, TRUE },

{ "sound N \"filename\" repeat N",

"sound %d \"%[^\"]\" repeat %d %n", OPS_1NUMBER_1TEXT_1NUMBER, TRUE },

{ "sound N \"filename\" repeat forever",

"sound %d \"%[^\"]\" repeat forever %n", OPS_1NUMBER_1TEXT, TRUE },

{ "sound N \"filename\" song", "sound %d \"%[^\"]\" song %n", OPS_1NUMBER_1TEXT, TRUE },

{ "sound N \"filename\"", "sound %d \"%[^\"]\" %n", OPS_1NUMBER_1TEXT, FALSE },

{ "source", "source %n", OPS_NO, FALSE },

{ "source public", "source public %n", OPS_NO, FALSE },

{ "status \"template\" \"filename\"", "status \"%[^\"]\" \"%[^\"]\" %n", OPS_2TEXT, FALSE },

{ "status alternative ||link to Inform documentation||",

"status alternative ||%[^|]|| %n", OPS_1TEXT, FALSE },

1/blurb - Blurb Parser x6 39

{ "status instruction ||link to Inform source text||",

"status instruction ||%[^|]|| %n", OPS_1TEXT, FALSE },

{ "storyfile \"filename\" include", "storyfile \"%[^\"]\" include %n", OPS_1TEXT, FALSE },

{ "storyfile \"filename\"", "storyfile \"%[^\"]\" %n", OPS_1TEXT, TRUE },

{ "storyfile leafname \"leafname\"", "storyfile leafname \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "template path \"folder\"", "template path \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ "website \"template\"", "website \"%[^\"]\" %n", OPS_1TEXT, FALSE },

{ NULL, NULL, OPS_NO, FALSE }

};

x6. Summary. For the -help information:

void summarise_blurb(void) {

int t;

printf("\nThe blurbfile is a script of commands, one per line, in these forms:\n");

for (t=0; syntaxes[t].prototype; t++)

if (syntaxes[t].deprecated == FALSE)

printf(" %s\n", syntaxes[t].explicated);

printf("\nThe following syntaxes, though legal in Blorb 2001, are not supported:\n");

for (t=0; syntaxes[t].prototype; t++)

if (syntaxes[t].deprecated == TRUE)

printf(" %s\n", syntaxes[t].explicated);

}

The function summarise blurb is called from 1/main.

x7. The interpreter. The following routine is called for each line of the blurb �le in sequence, including
any blank lines.

void interpret(char *command, text_file_position *tf) {

set_error_position(tf);

if (command == NULL) fatal("null blurb line");

command = trim_white_space(command);

if (command[0] == 0) return; thus skip a line containing only blank space

if (command[0] == '!') return; thus skip a comment line

if (trace_mode) fprintf(stdout, "! %03d: %s\n", tfp_get_line_count(tf), command);

int outcome = -1; which of the legal command syntaxes is used

char text1[MAX_TEXT_FILE_LINE_LENGTH], text2[MAX_TEXT_FILE_LINE_LENGTH],

text3[MAX_TEXT_FILE_LINE_LENGTH];

text1[0] = 0; text2[0] = 0; text3[0] = 0;

int num1 = 0, num2 = 0, num3 = 0;

hParse the command and set operands appropriately 8i;
hTake action on the command 9i;

}

The function interpret is.

1/blurb - Blurb Parser x8 40

x8. Here we set outcome to the index in the syntaxes table of the line matched, or leave it as �1 if no match
can be made. Text and number operands are copied in text1, num1, ..., accordingly.

hParse the command and set operands appropriately 8i �
int t;

for (t=0; syntaxes[t].prototype; t++) {

char *pr = syntaxes[t].prototype;

int nm = -1; number of characters matched

switch (syntaxes[t].operands) {

case OPS_NO: sscanf(command, pr, &nm); break;

case OPS_1TEXT: sscanf(command, pr, text1, &nm); break;

case OPS_2TEXT: sscanf(command, pr, text1, text2, &nm); break;

case OPS_1NUMBER: sscanf(command, pr, &num1, &nm); break;

case OPS_2NUMBER: sscanf(command, pr, &num1, &num2, &nm); break;

case OPS_1NUMBER_1TEXT: sscanf(command, pr, &num1, text1, &nm); break;

case OPS_1NUMBER_2TEXTS: sscanf(command, pr, &num1, text1, text2, &nm); break;

case OPS_1NUMBER_1TEXT_1NUMBER: sscanf(command, pr, &num1, text1, &num2, &nm); break;

case OPS_3NUMBER: sscanf(command, pr, &num1, &num2, &num3, &nm); break;

case OPS_3TEXT: sscanf(command, pr, text1, text2, text3, &nm); break;

default: fatal("unknown operand type");

}

if (nm == strlen(command)) { outcome = t; break; }

}

if ((strlen(text1) >= MAX_FILENAME_LENGTH-1) ||

(strlen(text2) >= MAX_FILENAME_LENGTH-1) ||

(strlen(text3) >= MAX_FILENAME_LENGTH-1)) {

error("string too long"); return;

}

if (outcome == -1) {

error_1("not a valid blurb command", command);

return;

}

if (syntaxes[outcome].deprecated) {

error_1("this Blurb syntax is no longer supported", syntaxes[outcome].explicated);

return;

}

This code is used in x7.

1/blurb - Blurb Parser x9 41

x9. The command is now fully parsed, and is one that we support. We can act.

hTake action on the command 9i �
switch (outcome) {

case author_COMMAND:

set_placeholder_to("AUTHOR", text1, 0);

author_chunk(text1);

break;

case auxiliary_COMMAND: create_auxiliary_file(text1, text2); break;

case base64_COMMAND:

request_2(BASE64_REQ, text1, text2, FALSE); break;

case copyright_COMMAND: copyright_chunk(text1); break;

case cover_COMMAND: hDeclare which �le is the cover art 10i; break;

case css_COMMAND: use_css_code_styles = TRUE; break;

case ifiction_file_COMMAND: metadata_chunk(text1); break;

case ifiction_COMMAND: request_1(IFICTION_REQ, "", TRUE); break;

case ifiction_public_COMMAND: request_1(IFICTION_REQ, "", FALSE); break;

case interpreter_COMMAND:

set_placeholder_to("INTERPRETERVMIS", text2, 0);

request_1(INTERPRETER_REQ, text1, FALSE); break;

case picture_COMMAND: picture_chunk(num1, text1); break;

case placeholder_COMMAND: set_placeholder_to(text1, text2, 0); break;

case project_folder_COMMAND: strcpy(project_folder, text1); break;

case release_COMMAND:

set_placeholder_to_number("RELEASE", num1);

release_chunk(num1);

break;

case release_file_COMMAND:

request_2(COPY_REQ, text1, get_filename_leafname(text1), FALSE); break;

case release_file_from_COMMAND:

request_2(RELEASE_FILE_REQ, text1, text2, FALSE); break;

case release_to_COMMAND:

strcpy(release_folder, text1);

hMake pathname placeholders in three di�erent formats 11i;
break;

case release_source_COMMAND:

request_3(RELEASE_SOURCE_REQ, text1, text2, text3, FALSE); break;

case solution_COMMAND: request_1(SOLUTION_REQ, "", TRUE); break;

case solution_public_COMMAND: request_1(SOLUTION_REQ, "", FALSE); break;

case sound_COMMAND: sound_chunk(num1, text1); break;

case source_COMMAND: request_1(SOURCE_REQ, "", TRUE); break;

case source_public_COMMAND: request_1(SOURCE_REQ, "", FALSE); break;

case status_COMMAND: strcpy(status_template, text1); strcpy(status_file, text2); break;

case status_alternative_COMMAND: request_1(ALTERNATIVE_REQ, text1, FALSE); break;

case status_instruction_COMMAND: request_1(INSTRUCTION_REQ, text1, FALSE); break;

case storyfile_include_COMMAND: executable_chunk(text1); break;

case storyfile_leafname_COMMAND: set_placeholder_to("STORYFILE", text1, 0); break;

case template_path_COMMAND: new_template_path(text1); break;

case website_COMMAND: request_1(WEBSITE_REQ, text1, FALSE); break;

default: error_1("***", command); fatal("*** command unimplemented ***\n");

}

This code is used in x7.

1/blurb - Blurb Parser x10 42

x10. We only ever set the frontispiece as resource number 1, since Inform has the assumption that the
cover art is image number 1 built in.

hDeclare which �le is the cover art 10i �
set_placeholder_to("BIGCOVER", text1, 0);

cover_exists = TRUE;

cover_is_in_JPEG_format = TRUE;

if ((text1[strlen(text1)-3] == 'p') || (text1[strlen(text1)-3] == 'P'))

cover_is_in_JPEG_format = FALSE;

frontispiece_chunk(1);

char *leaf = get_filename_leafname(text1);

if (strcmp(leaf, "DefaultCover.jpg") == 0) default_cover_used = TRUE;

if (cover_is_in_JPEG_format) strcpy(leaf, "Small Cover.jpg");

else strcpy(leaf, "Small Cover.png");

set_placeholder_to("SMALLCOVER", text1, 0);

This code is used in x9.

x11. Here, text1 is the pathname of the Release folder. If we suppose that cblorb is being run from
Inform, then this folder is a subfolder of the Materials folder for an I7 project. It follows that we can
obtain the pathname to the Materials folder by trimming the leaf and the �nal separator. That makes the
MATERIALSFOLDERPATH placeholder. We then set MATERIALSFOLDER to the name of the Materials folder, e.g.,
\Spaceman Spi� Materials".

However, we also need two variants on the pathname, one to be supplied to the Javascript function openUrl

and one to fileUrl. For platform dependency reasons these need to be manipulated to deal with awkward
characters.

hMake pathname placeholders in three di�erent formats 11i �
set_placeholder_to("MATERIALSFOLDERPATH", text1, 0);

int k = strlen(text1);

while ((k>=0) && (text1[k] != SEP_CHAR)) k--;

if (k>0) { *(read_placeholder("MATERIALSFOLDERPATH")+k)=0; k--; }

while ((k>=0) && (text1[k] != SEP_CHAR)) k--; k++;

set_placeholder_to("MATERIALSFOLDER", text1 + k, 0);

char *L = read_placeholder("MATERIALSFOLDER");

while (*L) { if (*L == SEP_CHAR) *L = 0; L++; }

qualify_placeholder("MATERIALSFOLDERPATHOPEN", "MATERIALSFOLDERPATHFILE",

"MATERIALSFOLDERPATH");

This code is used in x9.

1/blurb - Blurb Parser x12 43

x12. And here that very \quali�cation" routine. The placeholder original contains the pathname to a
folder, a pathname which might contain spaces or backslashes, and which needs to be quoted as a literal
Javascript string supplied to either the function openUrl or the function fileUrl. Depending on the platform
in use, this may entail escaping spaces or reversing slashes in the pathname in order to make versions for
these two functions to use.

void qualify_placeholder(char *openUrl_path, char *fileUrl_path, char *original) {

int i;

char *p = read_placeholder(original);

for (i=0; p[i]; i++) {

char oU_glyph[8], fU_glyph[8];

sprintf(oU_glyph, "%c", p[i]); sprintf(fU_glyph, "%c", p[i]);

if (p[i] == ' ') {

if (escape_openUrl) sprintf(oU_glyph, "%%2520");

if (escape_fileUrl) sprintf(fU_glyph, "%%2520");

}

if (p[i] == '\\') {

if (reverse_slash_openUrl) sprintf(oU_glyph, "/");

if (reverse_slash_fileUrl) sprintf(fU_glyph, "/");

}

append_to_placeholder(openUrl_path, oU_glyph);

append_to_placeholder(fileUrl_path, fU_glyph);

}

}

The function qualify placeholder is.

2 Blorbs

2/blorb: Blorb Writer.w To write the Blorb �le, our main output, to disc.

Blorb Writer 2/blorb

Purpose

To write the Blorb �le, our main output, to disc.

2/blorb.x1 Big-endian integers; x2-6 Chunks; x7-17 Our choice of chunks; x18-25 Main construction

De�nitions

{1. \Blorb" is an IF-speci�c format, but it is de�ned as a form of IFF �le. IFF, \Interchange File Format",
is a general-purpose wrapper format dating back to the mid-1980s; it was designed as a way to gather together
audiovisual media for use on home computers. (Though Electronic Arts among others used IFF �les to wrap
up entertainment material, Infocom, the pioneer of IF at the time, did not.) Each IFF �le consists of a chunk,
but any chunk can contain other chunks in turn. Chunks are identi�ed with initial ID texts four characters
long. In di�erent domains of computing, people use di�erent chunks, and this makes di�erent sorts of IFF
�le look like di�erent �le formats to the end user. So we have TIFF for images, AIFF for uncompressed
audio, AVI for movies, GIF for bitmap graphics, and so on.

{2. Main variables:

int total_size_of_Blorb_chunks = 0; ditto, but not counting the FORM header or the RIdx chunk

int no_indexed_chunks = 0;

{3. As we shall see, chunks can be used for everything from a few words of copyright text to 100MB of
uncompressed choral music.

Our IFF �le will consist of a front part and then the chunks, one after another, in order of their creation.
Every chunk has a type, a 4-character ID like "AUTH" or "JPEG", specifying what kind of data it holds; some
chunks are also given resource", " numbers which allow the story �le to refer to them as it runs { the pictures,
sound e�ects and the story �le itself all have unique resource numbers. (These are called \indexed", because
references to them appear in a special RIdx record in the front part of the �le { the \resource index".)

typedef struct chunk_metadata {

char filename[MAX_FILENAME_LENGTH]; if the content is stored on disc

char data_in_memory[MAX_FILENAME_LENGTH]; if the content is stored in memory

int length_of_data_in_memory; in bytes; or �1 if the content is stored on disc

char *chunk_type; pointer to a 4-character string

char *index_entry; ditto

int resource_id; meaningful only if this is a chunk which is indexed

int byte_offset; from the start of the chunks, which is not quite the start of the IFF �le

int size; in bytes

MEMORY_MANAGEMENT

} chunk_metadata;

The structure chunk metadata is private to this section.

2/blorb - Blorb Writer x1 46

x1. Big-endian integers. IFF �les use big-endian integers, whereas cBlorbmight or might not (depending
on the platform it runs on), so we need routines to write 32, 16 or 8-bit values in explicitly big-endian form:

void four_word(FILE *F, int n) {

fputc((n / 0x1000000)%0x100, F);

fputc((n / 0x10000)%0x100, F);

fputc((n / 0x100)%0x100, F);

fputc((n)%0x100, F);

}

void two_word(FILE *F, int n) {

fputc((n / 0x100)%0x100, F);

fputc((n)%0x100, F);

}

void one_byte(FILE *F, int n) {

fputc((n)%0x100, F);

}

void s_four_word(char *F, int n) {

F[0] = (n / 0x1000000)%0x100;

F[1] = (n / 0x10000)%0x100;

F[2] = (n / 0x100)%0x100;

F[3] = (n)%0x100;

}

void s_two_word(char *F, int n) {

F[0] = (n / 0x100)%0x100;

F[1] = (n)%0x100;

}

void s_one_byte(char *F, int n) {

F[0] = (n)%0x100;

}

The function four word is.

The function two word is.

The function one byte is.

The function s four word is.

The function s two word is.

The function s one byte is.

x2. Chunks. Although chunks can be written in a nested way { that's the whole point of IFF, in fact {
we will always be writing a very
at structure, in which a single enclosing chunk (FORM) contains a sequence
of chunks with no further chunks inside.

chunk_metadata *current_chunk = NULL;

2/blorb - Blorb Writer x3 47

x3. Each chunk is \added" in one of two ways. Either we supply a �lename for an existing binary �le on
disc which will hold the data we want to write, or we supply a NULL �lename and a data pointer to length

bytes in memory.

void add_chunk_to_blorb(char *id, int resource_num, char *supplied_filename, char *index,

char *data, int length) {

if (chunk_type_is_legal(id) == FALSE)

fatal("tried to complete non-Blorb chunk");

if (index_entry_is_legal(index) == FALSE)

fatal("tried to include mis-indexed chunk");

current_chunk = CREATE(chunk_metadata);

hSet the �lename for the new chunk 4i;

current_chunk->chunk_type = id;

current_chunk->index_entry = index;

if (current_chunk->index_entry) no_indexed_chunks++;

current_chunk->byte_offset = total_size_of_Blorb_chunks;

current_chunk->resource_id = resource_num;

hCompute the size in bytes of the chunk 5i;
hAdvance the total chunk size 6i;

if (trace_mode)

printf("! Begun chunk %s: fn is <%s> (innate size %d)\n",

current_chunk->chunk_type, current_chunk->filename, current_chunk->size);

}

The function add chunk to blorb is.

x4.

hSet the �lename for the new chunk 4i �
if (data) {

strcpy(current_chunk->filename, "(not from a file)");

current_chunk->length_of_data_in_memory = length;

int i;

for (i=0; i<length; i++) current_chunk->data_in_memory[i] = data[i];

} else {

strcpy(current_chunk->filename, supplied_filename);

current_chunk->length_of_data_in_memory = -1;

}

This code is used in x3.

x5.

hCompute the size in bytes of the chunk 5i �
int size;

if (data) {

size = length;

} else {

size = (int) file_size(supplied_filename);

}

if (chunk_type_is_already_an_IFF(current_chunk->chunk_type) == FALSE)

size += 8; allow 8 further bytes for the chunk header to be added later

current_chunk->size = size;

This code is used in x3.

2/blorb - Blorb Writer x6 48

x6. Note the adjustment of total_size_of_Blorb_chunks so as to align the next chunk's position at a two-
byte boundary { this betrays IFF's origin in the 16-bit world of the mid-1980s. Today's formats would likely
align at four, eight or even sixteen-byte boundaries.

hAdvance the total chunk size 6i �
total_size_of_Blorb_chunks += current_chunk->size;

if ((current_chunk->size) % 2 == 1) total_size_of_Blorb_chunks++;

This code is used in x3.

x7. Our choice of chunks. We will generate only the following chunks with the above apparatus. The
full Blorb speci�cation does include others, but Inform doesn't need them.

The weasel words \with the above..." are because we will also generate two chunks separately: the compulsory
"FORM" chunk enclosing the entire Blorb, and an indexing chunk, "RIdx". Within this index, some chunks
appear, but not others, and they are labelled with the \index entry" text.

char *legal_Blorb_chunk_types[] = {

"AUTH", "(c) ", "Fspc", "RelN", "IFmd", miscellaneous identifying data

"JPEG", "PNG ", images in di�erent formats

"AIFF", "OGGV", "MIDI", "MOD ", sound e�ects in di�erent formats

"ZCOD", "GLUL", story �les in di�erent formats

NULL };

char *legal_Blorb_index_entries[] = {

"Pict", "Snd ", "Exec", NULL };

x8. Because we are wisely paranoid:

int chunk_type_is_legal(char *type) {

int i;

if (type == NULL) return FALSE;

for (i=0; legal_Blorb_chunk_types[i]; i++)

if (strcmp(type, legal_Blorb_chunk_types[i]) == 0)

return TRUE;

return FALSE;

}

int index_entry_is_legal(char *entry) {

int i;

if (entry == NULL) return TRUE;

for (i=0; legal_Blorb_index_entries[i]; i++)

if (strcmp(entry, legal_Blorb_index_entries[i]) == 0)

return TRUE;

return FALSE;

}

The function chunk type is legal is.

The function index entry is legal is.

2/blorb - Blorb Writer x9 49

x9. Because it will make a di�erence to how we embed a �le into our Blorb, we need to know whether the
chunk in question is already an IFF in its own right. Only one type of chunk is, as it happens:

int chunk_type_is_already_an_IFF(char *type) {

if (strcmp(type, "AIFF")==0) return TRUE;

return FALSE;

}

The function chunk type is already an IFF is.

x10. "AUTH": author's name, as a null-terminated string.

void author_chunk(char *t) {

if (trace_mode) printf("! Author: <%s>\n", t);

add_chunk_to_blorb("AUTH", 0, NULL, NULL, t, strlen(t));

}

The function author chunk is called from 1/blurb.

x11. "(c) ": copyright declaration.

void copyright_chunk(char *t) {

if (trace_mode) printf("! Copyright declaration: <%s>\n", t);

add_chunk_to_blorb("(c) ", 0, NULL, NULL, t, strlen(t));

}

The function copyright chunk is called from 1/blurb.

x12. "Fspc": frontispiece image ID number { which picture resource provides cover art, in other words.

void frontispiece_chunk(int pn) {

if (trace_mode) printf("! Frontispiece is image %d\n", pn);

char data[4];

s_four_word(data, pn);

add_chunk_to_blorb("Fspc", 0, NULL, NULL, data, 4);

}

The function frontispiece chunk is called from 1/blurb.

x13. "RelN": release number.

void release_chunk(int rn) {

if (trace_mode) printf("! Release number is %d\n", rn);

char data[2];

s_two_word(data, rn);

add_chunk_to_blorb("RelN", 0, NULL, NULL, data, 2);

}

The function release chunk is called from 1/blurb.

2/blorb - Blorb Writer x14 50

x14. "Pict": a picture, or image. This must be available as a binary �le on disc, and in a format which
Blorb allows: for Inform 7 use, this will always be PNG or JPEG. There can be any number of these chunks.

void picture_chunk(int n, char *fn) {

char *p = get_filename_extension(fn);

char *type = "PNG ";

if (*p == '.') {

p++;

if ((*p == 'j') || (*p == 'J')) type = "JPEG";

}

add_chunk_to_blorb(type, n, fn, "Pict", NULL, 0);

no_pictures_included++;

}

The function picture chunk is called from 1/blurb.

x15. "Snd ": a sound e�ect. This must be available as a binary �le on disc, and in a format which Blorb
allows: for Inform 7 use, this is o�cially Ogg Vorbis or AIFF at present, but there has been repeated
discussion about adding MOD (\SoundTracker") or MIDI �les, so both are supported here.

There can be any number of these chunks, too.

void sound_chunk(int n, char *fn) {

char *p = get_filename_extension(fn);

char *type = "AIFF";

if (*p == '.') {

p++;

if ((*p == 'o') || (*p == 'O')) type = "OGGV";

else if ((*p == 'm') || (*p == 'M')) {

if ((p[1] == 'i') || (p[1] == 'I')) type = "MIDI";

else type = "MOD ";

}

}

add_chunk_to_blorb(type, n, fn, "Snd ", NULL, 0);

no_sounds_included++;

}

The function sound chunk is called from 1/blurb.

x16. "Exec": the executable program, which will normally be a Z-machine or Glulx story �le. It's legal to
make a blorb with no story �le in, but Inform 7 never does this.

void executable_chunk(char *fn) {

char *p = get_filename_extension(fn);

char *type = "ZCOD";

if (*p == '.') {

if (p[strlen(p)-1] == 'x') type = "GLUL";

}

add_chunk_to_blorb(type, 0, fn, "Exec", NULL, 0);

}

The function executable chunk is called from 1/blurb.

2/blorb - Blorb Writer x17 51

x17. "IFmd": the bibliographic data (or \metadata") about the work of IF being blorbed up, in the form
of an iFiction record. (The format of which is set out in the Treaty of Babel agreement.)

void metadata_chunk(char *fn) {

add_chunk_to_blorb("IFmd", 0, fn, NULL, NULL, 0);

}

The function metadata chunk is called from 1/blurb.

x18. Main construction.

void write_blorb_file(char *out) {

if (NUMBER_CREATED(chunk_metadata) == 0) return;

FILE *IFF = fopen(out, "wb");

if (IFF == NULL) fatal_fs("can't open blorb file for output", out);

int RIdx_size, first_byte_after_index;

hCalculate the sizes of the whole �le and the index chunk 19i;
hWrite the initial FORM chunk of the IFF �le, and then the index 20i;
if (trace_mode) hPrint out a copy of the chunk table 24i;

chunk_metadata *chunk;

LOOP_OVER(chunk, chunk_metadata) hWrite the chunk 21i;

fclose(IFF);

}

The function write blorb �le is called from 1/main.

x19. The bane of IFF �le generation is that each chunk has to be marked up-front with an o�set to skip past
it. This means that, unlike with XML or other �les having
exible-sized ingredients delimited by begin-end
markers, we always have to know the length of a chunk before we start writing it.

That even extends to the �le itself, which is a single IFF chunk of type "FORM". So we need to think carefully.
We will need the FORM header, then the header for the RIdx indexing chunk, then the body of that indexing
chunk { with one record for each indexed chunk; and then room for all of the chunks we'll copy in, whether
they are indexed or not.

hCalculate the sizes of the whole �le and the index chunk 19i �
int FORM_header_size = 12;

int RIdx_header_size = 12;

int index_entry_size = 12;

RIdx_size = RIdx_header_size + index_entry_size*no_indexed_chunks;

first_byte_after_index = FORM_header_size + RIdx_size;

blorb_file_size = first_byte_after_index + total_size_of_Blorb_chunks;

This code is used in x18.

2/blorb - Blorb Writer x20 52

x20. Each di�erent IFF �le format is supposed to provide its own \magic text" identifying what the �le
format is, and for Blorbs that text is \IFRS", short for \IF Resource".

hWrite the initial FORM chunk of the IFF �le, and then the index 20i �
fprintf(IFF, "FORM");

four_word(IFF, blorb_file_size - 8); o�set to end of FORM after the 8 bytes so far

fprintf(IFF, "IFRS"); magic text identifying the IFF as a Blorb

fprintf(IFF, "RIdx");

four_word(IFF, RIdx_size - 8); o�set to end of RIdx after the 8 bytes so far

four_word(IFF, no_indexed_chunks); i.e., number of entries in the index

chunk_metadata *chunk;

LOOP_OVER(chunk, chunk_metadata)

if (chunk->index_entry) {

fprintf(IFF, "%s", chunk->index_entry);

four_word(IFF, chunk->resource_id);

four_word(IFF, first_byte_after_index + chunk->byte_offset);

}

This code is used in x18.

x21. Most of the chunks we put in exist on disc without their headers, but AIFF sound �les are an exception,
because those are IFF �les in their own right; so they come with ready-made headers.

hWrite the chunk 21i �
int bytes_to_copy;

char *type = chunk->chunk_type;

if (chunk_type_is_already_an_IFF(type) == FALSE) {

fprintf(IFF, "%s", type);

four_word(IFF, chunk->size - 8); o�set to end of chunk after the 8 bytes so far

bytes_to_copy = chunk->size - 8; since here the chunk size included 8 extra

} else {

bytes_to_copy = chunk->size; whereas here the chunk size was genuinely the �le size

}

if (chunk->length_of_data_in_memory >= 0)

hCopy that many bytes from memory 23i
else

hCopy that many bytes from the chunk �le on the disc 22i;

if ((bytes_to_copy % 2) == 1) one_byte(IFF, 0); as we allowed for above

This code is used in x18.

2/blorb - Blorb Writer x22 53

x22. Sometimes the chunk's contents are on disc:

hCopy that many bytes from the chunk �le on the disc 22i �
FILE *CHUNKSUB = fopen(chunk->filename, "rb");

if (CHUNKSUB == NULL) fatal_fs("unable to read data", chunk->filename);

else {

int i;

for (i=0; i<bytes_to_copy; i++) {

int j = fgetc(CHUNKSUB);

if (j == EOF) fatal_fs("chunk ran out incomplete", chunk->filename);

one_byte(IFF, j);

}

fclose(CHUNKSUB);

}

This code is used in x21.

x23. And sometimes, for shorter things, they are in memory:

hCopy that many bytes from memory 23i �
int i;

for (i=0; i<bytes_to_copy; i++) {

int j = chunk->data_in_memory[i];

one_byte(IFF, j);

}

This code is used in x21.

x24. For debugging purposes only:

hPrint out a copy of the chunk table 24i �
printf("! Chunk table:\n");

chunk_metadata *chunk;

LOOP_OVER(chunk, chunk_metadata)

printf("! Chunk %s %06x %s %d <%s>\n",

chunk->chunk_type, chunk->size,

(chunk->index_entry)?(chunk->index_entry):"unindexed",

chunk->resource_id,

chunk->filename);

printf("! End of chunk table\n");

This code is used in x18.

3 Other Material

3/rel: Releaser.w To manage requests to release material other than a Blorb �le.

3/sol: Solution Deviser.w To make a solution (.sol) �le accompanying a release, if requested.

3/links: Links and Auxiliary Files.w To manage links to auxiliary �les, and placeholder variables.

3/place: Placeholders.w To manage placeholder variables.

3/templ: Templates.w To manage templates for website generation.

3/web: Website Maker.w To accompany a release with a mini-website.

3/b64: Base64.w To produce base64-encoded story �les ready for in-browser play by a Javascript-based
interpreter such as Parchment.

Releaser 3/rel

Purpose

To manage requests to release material other than a Blorb �le.

3/rel.x1-2 Receiving requests; x3 Any Last Requests; x4-14 Carrying out requests; x15 The Extras �le for a website template;

x16-24 The Manifest �le for an interpreter; x25 Blorb relocation; x26-37 Reporting the release

De�nitions

{1. If the previous section, \Blorb Writer.w", was the Lord High Executioner, then this one is the Lord
High Everything Else: it keeps track of requests to write all kinds of interesting things which are not blorb
�les, and then sees that they are carried out. The requests divide as follows:

de�ne COPY_REQ 0 a miscellaneous �le

de�ne IFICTION_REQ 1 the iFiction record of a project

de�ne RELEASE_FILE_REQ 2 a template �le

de�ne RELEASE_SOURCE_REQ 3 the source text in HTML form

de�ne SOLUTION_REQ 4 a solution �le generated from the skein

de�ne SOURCE_REQ 5 the source text of a project

de�ne WEBSITE_REQ 6 a whole website

de�ne INTERPRETER_REQ 7 an in-browser interpreter

de�ne BASE64_REQ 8 a base64-encoded copy of a binary �le

de�ne INSTRUCTION_REQ 9 a release instruction copied to cblorb for reporting only

de�ne ALTERNATIVE_REQ 10 an unused release instruction copied to cblorb for reporting only

int website_requested = FALSE; has a WEBSITE_REQ been made?

{2. This would use a lot of memory if there were many requests, but there are not and it does not.

typedef struct request {

int what_is_requested; one of the *_REQ values above

char details1[MAX_FILENAME_LENGTH];

char details2[MAX_FILENAME_LENGTH];

char details3[MAX_FILENAME_LENGTH];

int private; is this request private, i.e., not to contribute to a website?

int outcome_data; e.g. number of bytes copied

MEMORY_MANAGEMENT

} request;

The structure request is private to this section.

3/rel - Releaser x1 56

x1. Receiving requests. These can have from 0 to 3 textual details attached:

request *request_0(int kind, int privacy) {

request *req = CREATE(request);

req->what_is_requested = kind;

req->details1[0] = 0;

req->details2[0] = 0;

req->details3[0] = 0;

req->private = privacy;

req->outcome_data = 0;

if (kind == WEBSITE_REQ) website_requested = TRUE;

return req;

}

request *request_1(int kind, char *text1, int privacy) {

request *req = request_0(kind, privacy);

strcpy(req->details1, text1);

return req;

}

request *request_2(int kind, char *text1, char *text2, int privacy) {

request *req = request_0(kind, privacy);

strcpy(req->details1, text1);

strcpy(req->details2, text2);

return req;

}

request *request_3(int kind, char *text1, char *text2, char *text3, int privacy) {

request *req = request_0(kind, privacy);

strcpy(req->details1, text1);

strcpy(req->details2, text2);

strcpy(req->details3, text3);

return req;

}

The function request 0 is.

The function request 1 is.

The function request 2 is.

The function request 3 is.

x2. A convenient abbreviation:

void request_copy(char *from, char *to) {

request_2(COPY_REQ, from, to, FALSE);

}

The function request copy is called from 3/links.

3/rel - Releaser x3 57

x3. Any Last Requests. Most of the requests are made as the parser reads commands from the blurb
script. At the end of that process, though, the following routine may add further requests as consequences:

void any_last_requests(void) {

request_copy_of_auxiliaries();

if (default_cover_used == FALSE) {

char *BIGCOVER = read_placeholder("BIGCOVER");

if (BIGCOVER) {

if (cover_is_in_JPEG_format) request_copy(BIGCOVER, "Cover.jpg");

else request_copy(BIGCOVER, "Cover.png");

}

if (website_requested) {

char *SMALLCOVER = read_placeholder("SMALLCOVER");

if (SMALLCOVER) {

if (cover_is_in_JPEG_format) request_copy(SMALLCOVER, "Small Cover.jpg");

else request_copy(SMALLCOVER, "Small Cover.png");

}

}

}

}

The function any last requests is.

x4. Carrying out requests.

void create_requested_material(void) {

if (release_folder[0] == 0) return;

printf("! Release folder: <%s>\n", release_folder);

if (blorb_file_size > 0) declare_where_blorb_should_be_copied(release_folder);

any_last_requests();

request *req;

LOOP_OVER(req, request) {

switch (req->what_is_requested) {

case ALTERNATIVE_REQ: break;

case BASE64_REQ: hCopy a base64-encoded �le across 9i; break;

case COPY_REQ: hCopy a �le into the release folder 8i; break;

case IFICTION_REQ: hCreate an iFiction �le 7i; break;

case INSTRUCTION_REQ: break;

case INTERPRETER_REQ: hCreate an in-browser interpreter 12i; break;

case RELEASE_FILE_REQ: hRelease a �le into the release folder 10i; break;

case RELEASE_SOURCE_REQ: hRelease source text as HTML into the release folder 11i; break;

case SOLUTION_REQ: hCreate a walkthrough �le 5i; break;

case SOURCE_REQ: hCreate a plain text source �le 6i; break;

case WEBSITE_REQ: hCreate a website 13i; break;

}

}

}

The function create requested material is called from 1/main.

3/rel - Releaser x5 58

x5.

hCreate a walkthrough �le 5i �
char Skein_filename[MAX_FILENAME_LENGTH];

sprintf(Skein_filename, "%s%cSkein.skein", project_folder, SEP_CHAR);

char solution_filename[MAX_FILENAME_LENGTH];

sprintf(solution_filename, "%s%csolution.txt", release_folder, SEP_CHAR);

walkthrough(Skein_filename, solution_filename);

This code is used in x4.

x6.

hCreate a plain text source �le 6i �
char source_text_filename[MAX_FILENAME_LENGTH];

sprintf(source_text_filename, "%s%cSource%cstory.ni",

project_folder, SEP_CHAR, SEP_CHAR);

char write_to[MAX_FILENAME_LENGTH];

sprintf(write_to, "%s%csource.txt", release_folder, SEP_CHAR);

copy_file(source_text_filename, write_to, FALSE);

This code is used in x4.

x7.

hCreate an iFiction �le 7i �
char iFiction_filename[MAX_FILENAME_LENGTH];

sprintf(iFiction_filename, "%s%cMetadata.iFiction", project_folder, SEP_CHAR);

char write_to[MAX_FILENAME_LENGTH];

sprintf(write_to, "%s%ciFiction.xml", release_folder, SEP_CHAR);

copy_file(iFiction_filename, write_to, FALSE);

This code is used in x4.

x8.

hCopy a �le into the release folder 8i �
char write_to[MAX_FILENAME_LENGTH];

sprintf(write_to, "%s%c%s", release_folder, SEP_CHAR, req->details2);

int size = copy_file(req->details1, write_to, TRUE);

req->outcome_data = size;

if (size == -1) {

int i;

for (i = strlen(req->details1); i>0; i--)

if ((req->details1)[i] == SEP_CHAR) { i++; break; }

errorf_1s(

"You asked to release along with a file called '%s', which ought "

"to be in the Materials folder for the project. But I can't find "

"it there.", (req->details1)+i);

}

This code is used in x4.

3/rel - Releaser x9 59

x9.

hCopy a base64-encoded �le across 9i �
encode_as_base64(req->details1, req->details2,

read_placeholder("BASESIXTYFOURTOP"), read_placeholder("BASESIXTYFOURTAIL"));

This code is used in x4.

x10.

hRelease a �le into the release folder 10i �
release_file_into_website(req->details1, req->details2, NULL);

This code is used in x4.

x11.

hRelease source text as HTML into the release folder 11i �
set_placeholder_to("SOURCEPREFIX", "source", 0);

set_placeholder_to("SOURCELOCATION", req->details1, 0);

set_placeholder_to("TEMPLATE", req->details3, 0);

char *HTML_template = find_file_in_named_template(req->details3, req->details2);

if (HTML_template == NULL) error_1("can't find HTML template file", req->details2);

if (trace_mode) printf("! Web page %s from template %s\n", HTML_template, req->details3);

web_copy_source(HTML_template, release_folder);

This code is used in x4.

x12. Interpreters are copied, not made. They're really just like website templates, except that they have
a manifest �le instead of an extras �le, and that they're copied into an interpreter subfolder of the release
folder, which is assumed already to exist. (It isn't copied because folder creation is tiresome to do in a
cross-platform way, since Windows doesn't follow POSIX. The necessary code exists in Inform already, so
we'll do it there.)

hCreate an in-browser interpreter 12i �
set_placeholder_to("INTERPRETER", req->details1, 0);

char *t = read_placeholder("INTERPRETER");

char *from = find_file_in_named_template(t, "(manifest).txt");

if (from) { i.e., if the \(manifest).txt" �le exists

file_read(from, "can't open (manifest) file", FALSE, read_requested_ifile, 0);

}

This code is used in x4.

3/rel - Releaser x13 60

x13. We copy the CSS �le, if we need one; make the home page; and make any other pages demanded by
public released material. After that, it's up to the template to add more if it wants to.

hCreate a website 13i �
set_placeholder_to("TEMPLATE", req->details1, 0);

char *t = read_placeholder("TEMPLATE");

if (use_css_code_styles) {

char *from = find_file_in_named_template(t, "style.css");

if (from) {

char CSS_filename[MAX_FILENAME_LENGTH];

sprintf(CSS_filename, "%s%cstyle.css", release_folder, SEP_CHAR);

copy_file(from, CSS_filename, FALSE);

}

}

release_file_into_website("index.html", t, NULL);

request *req;

LOOP_OVER(req, request)

if (req->private == FALSE)

switch (req->what_is_requested) {

case INTERPRETER_REQ:

release_file_into_website("play.html", t, NULL); break;

case SOURCE_REQ:

set_placeholder_to("SOURCEPREFIX", "source", 0);

char source_text[MAX_FILENAME_LENGTH];

sprintf(source_text, "%s%cSource%cstory.ni",

project_folder, SEP_CHAR, SEP_CHAR);

set_placeholder_to("SOURCELOCATION", source_text, 0);

release_file_into_website("source.html", t, NULL); break;

}

hAdd further material as requested by the template 14i;

This code is used in x4.

x14. Most templates do not request extra �les, but they have the option by including a manifest called
\(extras).txt":

hAdd further material as requested by the template 14i �
char *from = find_file_in_named_template(t, "(extras).txt");

if (from) { i.e., if the \(extras).txt" �le exists

file_read(from, "can't open (extras) file", FALSE, read_requested_file, 0);

}

This code is used in x13.

x15. The Extras �le for a website template. When parsing \(extras).txt", read_requested_file is
called for each line. We trim white space and expect the result to be a �lename of something within the
template.

void read_requested_file(char *filename, text_file_position *tfp) {

filename = trim_white_space(filename);

if (filename[0] == 0) return;

release_file_into_website(filename, read_placeholder("TEMPLATE"), NULL);

}

The function read requested �le is.

3/rel - Releaser x16 61

x16. The Manifest �le for an interpreter. When parsing \(manifest).txt", we do almost the same
thing. Like a website template, an interpreter is stored in a single folder, and the manifest can list �les which
need to be copied into the Release in order to piece together a working copy of the interpreter.

However, this is more expressive than the \(extras).txt" �le because it also has the ability to set placeholders
in cblorb. We use this mechanism because it allows each interpreter to provide some metadata about its
own identity and exactly how it wants to be interfaced with the website which cblorb will generate. This
isn't the place to document what those metadata placeholders are and what they mean, since (except for
a consistency check below) cblorb doesn't know anything about them { it's the Standard website template
which they need to match up to. Anyway, the best way to get an idea of this is to read the manifest �le for
the default, Parchment, interpreter.

char current_placeholder[MAX_VAR_NAME_LENGTH];

int cp_written = FALSE;

void read_requested_ifile(char *manifestline, text_file_position *tfp) {

if (cp_written == FALSE) { cp_written = TRUE; current_placeholder[0] = 0; }

manifestline = trim_white_space(manifestline);

if (manifestline[0] == '[') hGo into or out of placeholder setting mode 17i;
if (current_placeholder[0] == 0)

hWe're outside placeholder mode, so it's a comment or a manifested �lename 18i
else

hWe're inside placeholder mode, so it's content to be spooled into the named placeholder 19i;
}

The function read requested i�le is.

x17. Placeholders are set thus:

[INTERPRETERVERSION]

Parchment for Inform 7

[]

where the opening line names the placeholder, then one or more lines give the contents, and the box line
ends the de�nition.

We're in the mode if current_placeholder is a non-empty C string, and if so, then it's the name of the one
being set. Thus the code to handle the opening and closing lines can be identical.

hGo into or out of placeholder setting mode 17i �
if (manifestline[strlen(manifestline)-1] == ']') {

if (strlen(manifestline) >= MAX_VAR_NAME_LENGTH) {

error_1("placeholder name too long in manifest file", manifestline);

return;

}

strcpy(current_placeholder, manifestline+1);

current_placeholder[strlen(current_placeholder)-1] = 0;

return;

}

error_1("placeholder name lacks ']' in manifest file", manifestline);

return;

This code is used in x16.

3/rel - Releaser x18 62

x18. Outside of placeholders, blank lines and lines introduced by the comment character ! are skipped.

hWe're outside placeholder mode, so it's a comment or a manifested �lename 18i �
if ((manifestline[0] == '!') || (manifestline[0] == 0)) return;

release_file_into_website(manifestline, read_placeholder("INTERPRETER"), "interpreter");

This code is used in x16.

x19. Line breaks are included between lines, though not at the end of the �nal line, so that a one-line
de�nition like the example above contains no line break. White space is stripped out at the left and right
hand edges of each line.

hWe're inside placeholder mode, so it's content to be spooled into the named placeholder 19i �
if (strcmp(current_placeholder, "INTERPRETERVM") == 0)

hCheck the value being given against the actual VM we're blorbing up 20i;
if (read_placeholder(current_placeholder))

append_to_placeholder(current_placeholder, "\n");

append_to_placeholder(current_placeholder, manifestline);

This code is used in x16.

x20. Perhaps it's clumsy to do it here, but at some point cblorb needs to make sure we aren't trying to
release a Z-machine game along with a Glulx interpreter, or vice versa. The manifest �le for the interpreter is
required to declare which virtual machines it implements, by giving a value of the placeholder INTERPRETERVM.
This declares whether the interpreter can handle blorbed Z-machine �les (z), blorbed Glulx �les (g) or both
(zg or gz). No other values are legal; note lower case. cblorb then checks this against its own placeholder
INTERPRETERVMIS, which stores what the actual format of the blorb being released is.

hCheck the value being given against the actual VM we're blorbing up 20i �
char *vm_used = read_placeholder("INTERPRETERVMIS");

int i, capable = FALSE;

for (i=0; manifestline[i]; i++)

if (vm_used[0] == manifestline[i]) capable = TRUE;

if (capable == FALSE) {

char *format = "Z-machine";

if (vm_used[0] == 'g') format = "Glulx";

errorf_2s(

"You asked to release along with a copy of the '%s' in-browser "

"interpreter, but this can't handle story files which use the "

"%s story file format. (The format can be changed on Inform's "

"Settings panel for a project.)",

read_placeholder("INTERPRETER"), format);

}

This code is used in x19.

3/rel - Releaser x21 63

x21. There are really three cases when we release something from a website template. We can copy it
verbatim as a binary �le, we can expand placeholders but otherwise copy as a single item, or we can use it
to make a mass generation of source pages.

void release_file_into_website(char *name, char *t, char *sub) {

char write_to[MAX_FILENAME_LENGTH];

if (sub) sprintf(write_to, "%s%c%s%c%s",

release_folder, SEP_CHAR, sub, SEP_CHAR, name);

else sprintf(write_to, "%s%c%s", release_folder, SEP_CHAR, name);

char *from = find_file_in_named_template(t, name);

if (from == NULL) {

error_1("unable to find file in website template", name);

return;

}

if (strcmp(get_filename_extension(name), ".html") == 0)

hRelease an HTML page from the template into the website 22i
else

hRelease a binary �le from the template into the website 23i;
}

The function release �le into website is.

x22. \Source.html" is a special case, as it expands into a whole suite of pages automagically. Otherwise
we work out the �lenames and then hand over to the experts.

hRelease an HTML page from the template into the website 22i �
set_placeholder_to("TEMPLATE", t, 0);

if (trace_mode) printf("! Web page %s from template %s\n", name, t);

if (strcmp(name, "source.html") == 0)

web_copy_source(from, release_folder);

else

web_copy(from, write_to);

This code is used in x21.

x23.

hRelease a binary �le from the template into the website 23i �
if (trace_mode) printf("! Binary file %s from template %s\n", name, t);

copy_file(from, write_to, FALSE);

This code is used in x21.

3/rel - Releaser x24 64

x24. The home page will need links to any public released resources, and this is where those are added (to
the other links already present, that is).

void add_links_to_requested_resources(FILE *COPYTO) {

request *req;

LOOP_OVER(req, request)

if (req->private == FALSE)

switch (req->what_is_requested) {

case WEBSITE_REQ: break;

case INTERPRETER_REQ:

fprintf(COPYTO, "");

download_link(COPYTO, "Play In-Browser", NULL, "play.html", "link");

fprintf(COPYTO, "");

break;

case SOURCE_REQ:

fprintf(COPYTO, "");

download_link(COPYTO, "Source Text", NULL, "source.html", "link");

fprintf(COPYTO, "");

break;

case SOLUTION_REQ:

fprintf(COPYTO, "");

download_link(COPYTO, "Solution", NULL, "solution.txt", "link");

fprintf(COPYTO, "");

break;

case IFICTION_REQ:

fprintf(COPYTO, "");

download_link(COPYTO, "Library Card", NULL, "iFiction.xml", "link");

fprintf(COPYTO, "");

break;

}

}

The function add links to requested resources is called from 3/links.

x25. Blorb relocation. This is a little dodge used to make the process of releasing games in Inform 7
more seamless: see the manual for an explanation.

void declare_where_blorb_should_be_copied(char *path) {

char *leaf = read_placeholder("STORYFILE");

if (leaf == NULL) leaf = "Story";

printf("Copy blorb to: [[%s%c%s]]\n", path, SEP_CHAR, leaf);

}

The function declare where blorb should be copied is.

3/rel - Releaser x26 65

x26. Reporting the release. Inform normally asks cblorb to generate an HTML page reporting what it
has done, and if things have gone well then this typically contains a list of what has been released. (That's
easy for us to produce, since we just have to look through the requests.) Rather than attempt to write to
the �le here, we copy the necessary HTML into the placeholder ph.

void report_requested_material(char *ph) {

if (release_folder[0] == 0) return; this should never happen

int launch_website = FALSE, launch_play = FALSE;

append_to_placeholder(ph, "");

hItemise the blorb �le, possibly mentioning pictures and sounds 27i;
hItemise the website, mentioning how many pages it has 28i;
hItemise the interpreter 29i;
hItemise the library card 30i;
hItemise the solution �le 31i;
hItemise the source text 32i;
hItemise auxiliary �les in a sub-list 33i;
append_to_placeholder(ph, "");

if ((launch_website) || (launch_play))

hGive a centred line of links to the main web pages produced 34i;

hAdd in links to release instructions from Inform source text 35i;
hAdd in advertisements for features Inform would like to o�er 36i;

}

The function report requested material is called from 1/main.

x27.

hItemise the blorb �le, possibly mentioning pictures and sounds 27i �
if ((no_pictures_included > 1) || (no_sounds_included > 0))

append_to_placeholder(ph,

"The blorb file [STORYFILE] ([BLORBFILESIZE]K in size, "

"including [BLORBFILEPICTURES] figures(s) and [BLORBFILESOUNDS] "

"sound(s))");

else

append_to_placeholder(ph,

"The blorb file [STORYFILE] ([BLORBFILESIZE]K in size)");

This code is used in x26.

x28.

hItemise the website, mentioning how many pages it has 28i �
if (count_requests_of_type(WEBSITE_REQ) > 0) {

append_to_placeholder(ph,

"A website (generated from the [TEMPLATE] template) of ");

char pcount[32];

sprintf(pcount, "%d page%s", HTML_pages_created, (HTML_pages_created!=1)?"s":"");

append_to_placeholder(ph, pcount);

append_to_placeholder(ph, "");

launch_website = TRUE;

}

This code is used in x26.

3/rel - Releaser x29 66

x29.

hItemise the interpreter 29i �
if (count_requests_of_type(INTERPRETER_REQ) > 0) {

launch_play = TRUE;

append_to_placeholder(ph,

"A play-in-browser page (generated from the [INTERPRETER] interpreter)");

}

This code is used in x26.

x30.

hItemise the library card 30i �
if (count_requests_of_type(IFICTION_REQ) > 0)

append_to_placeholder(ph,

"The library card (stored as an iFiction record)");

This code is used in x26.

x31.

hItemise the solution �le 31i �
if (count_requests_of_type(SOLUTION_REQ) > 0)

append_to_placeholder(ph,

"A solution file");

This code is used in x26.

x32.

hItemise the source text 32i �
if (count_requests_of_type(SOURCE_REQ) > 0) {

if (source_HTML_pages_created > 0) {

append_to_placeholder(ph, "The source text (as plain text and as ");

char pcount[32];

sprintf(pcount, "%d web page%s",

source_HTML_pages_created, (source_HTML_pages_created!=1)?"s":"");

append_to_placeholder(ph, pcount);

append_to_placeholder(ph, ")");

}

}

if (count_requests_of_type(RELEASE_SOURCE_REQ) > 0)

append_to_placeholder(ph,

"The source text (as part of the website)");

This code is used in x26.

3/rel - Releaser x33 67

x33.

hItemise auxiliary �les in a sub-list 33i �
if (count_requests_of_type(COPY_REQ) > 0) {

append_to_placeholder(ph, "The following additional file(s):");

request *req;

LOOP_OVER(req, request)

if (req->what_is_requested == COPY_REQ) {

char *leafname = req->details2;

append_to_placeholder(ph, "");

append_to_placeholder(ph, leafname);

if (req->outcome_data >= 4096) {

char filesize[32];

sprintf(filesize, " (%dK)", req->outcome_data/1024);

append_to_placeholder(ph, filesize);

} else if (req->outcome_data >= 0) {

char filesize[32];

sprintf(filesize, " (%d byte%s)",

req->outcome_data, (req->outcome_data!=1)?"s":"");

append_to_placeholder(ph, filesize);

}

append_to_placeholder(ph, "");

}

append_to_placeholder(ph, "");

}

This code is used in x26.

x34. These two links are handled by means of LAUNCH icons which, if clicked, open the relevant pages not
in the Inform application but using an external web browser (e.g., Safari on most Mac OS X installations).
We can only achieve this e�ect using a Javascript function provided by the Inform application, called openUrl.

hGive a centred line of links to the main web pages produced 34i �
append_to_placeholder(ph, "<p><center>");

if (launch_website) {

append_to_placeholder(ph,

"<a href=\"[JAVASCRIPTPRELUDE]"

"openUrl('file://[MATERIALSFOLDERPATHOPEN]/Release/index.html')\">"

" home page");

}

if ((launch_website) && (launch_play))

append_to_placeholder(ph, " : ");

if (launch_play) {

append_to_placeholder(ph,

"<a href=\"[JAVASCRIPTPRELUDE]"

"openUrl('file://[MATERIALSFOLDERPATHOPEN]/Release/play.html')\">"

" play-in-browser page");

}

append_to_placeholder(ph, "</center></p>");

This code is used in x26.

3/rel - Releaser x35 68

x35. Since cblorb has no knowledge of what the Inform source text producing this blorb was, it can't
�nish the status report from its own knowledge { it must rely on details supplied to it by Inform via blurb
commands. First, Inform gives it source-text links for any \Release along with..." sentences, which have by
now become INSTRUCTION_REQ requests:

hAdd in links to release instructions from Inform source text 35i �
request *req;

int count = 0;

LOOP_OVER(req, request)

if (req->what_is_requested == INSTRUCTION_REQ) {

if (count == 0)

append_to_placeholder(ph, "<p>The source text gives release instructions ");

else

append_to_placeholder(ph, " and ");

append_to_placeholder(ph, req->details1);

append_to_placeholder(ph, " here");

count++;

}

if (count > 0)

append_to_placeholder(ph, ".</p>");

This code is used in x26.

x36. And secondly, Inform gives it adverts for other fancy services on o�er, complete with links to the
Inform documentation (which, again, cblorb doesn't itself know about); and these have by now become
ALTERNATIVE_REQ requests.

hAdd in advertisements for features Inform would like to o�er 36i �
request *req;

int count = 0;

LOOP_OVER(req, request)

if (req->what_is_requested == ALTERNATIVE_REQ) {

if (count == 0)

append_to_placeholder(ph,

"<p>Here are some other possibilities you might want to consider:<p>");

append_to_placeholder(ph, "");

append_to_placeholder(ph, req->details1);

append_to_placeholder(ph, "");

count++;

}

if (count > 0)

append_to_placeholder(ph, "</p>");

This code is used in x26.

x37. A convenient way to see if we've received requests of any given type:

int count_requests_of_type(int t) {

request *req;

int count = 0;

LOOP_OVER(req, request)

if (req->what_is_requested == t)

count++;

return count;

}

The function count requests of type is.

Solution Deviser 3/sol

Purpose

To make a solution (.sol) �le accompanying a release, if requested.

3/sol.x2-13 Step 1: building the Skein tree; x14 Step 2: identify the relevant lines; x15-16 Step 3: pruning irrelevant lines out of the

tree; x17-21 Step 4: writing the solution �le; x22-23 Writing individual commands and branch descriptions

De�nitions

{1. A solution �le is simply a list of commands which will win a work of IF, starting from turn 1. In this
section we will generate this list given the Skein �le for an Inform 7 project: to follow this code, it's useful �rst
to read the \Walkthrough solutions" section of the \Releasing" chapter in the main Inform documentation.

We will need to parse the entire skein into a tree structure, in which each node (including leaves) is one of
the following structures. We expect the Inform user to have annotated certain nodes with the text *** (three
asterisks); the solution �le will ignore all paths in the skein which do not lead to one of these *** nodes. The
surviving nodes, those in lines which do lead to *** endings, are called \relevant".

Some knots have \branch descriptions", others do not. These are the options where choices have to be made.
The branch_parent and branch_count �elds are used to keep these labels: see below.

de�ne MAX_NODE_ID_LENGTH 32

de�ne MAX_COMMAND_LENGTH 128

de�ne MAX_ANNOTATION_LENGTH 128

typedef struct skein_node {

char id[MAX_NODE_ID_LENGTH]; uniquely identifying ID used within the Skein �le

char command[MAX_COMMAND_LENGTH]; text of the command at this node

char annotation[MAX_ANNOTATION_LENGTH]; text of any annotation added by the user

int relevant; is this node within one of the \relevant" lines in the skein?

struct skein_node *branch_parent; the trunk of the branch description, if any, is this way

int branch_count; the leaf of the branch description, if any, is this number

struct skein_node *parent; within the Skein tree: NULL for the root only

struct skein_node *child; within the Skein tree: NULL if a leaf

struct skein_node *sibling; within the Skein tree: NULL if the �nal option from its parent

MEMORY_MANAGEMENT

} skein_node;

The structure skein node is private to this section.

3/sol - Solution Deviser {2 70

{2. The root of the Skein, representing the start position before any command is typed, lives here:

skein_node *root_skn = NULL; only NULL when the tree is empty

x1. This section provides just one function to the rest of cblorb: this one, which implements the Blurb
solution command.

Our method works in four steps. Steps 1 to 3 have a running time of O(K2), where K is the number of
knots in the Skein, and step 4 is O(K log

2
(K)), so the process as a whole is O(K2).

void walkthrough(char *Skein_filename, char *walkthrough_filename) {

build_skein_tree(Skein_filename);

if (root_skn == NULL) {

error("there appear to be no threads in the Skein");

return;

}

identify_relevant_lines();

if (root_skn->relevant == FALSE) {

error("no threads in the Skein have been marked '***'");

return;

}

prune_irrelevant_lines();

write_solution_file(walkthrough_filename);

}

The function walkthrough is called from 3/rel.

x2. Step 1: building the Skein tree.

skein_node *current_skein_node = NULL;

void build_skein_tree(char *Skein_filename) {

root_skn = NULL;

current_skein_node = NULL;

file_read(Skein_filename, "can't open skein file", FALSE, read_skein_pass_1, 0);

current_skein_node = NULL;

file_read(Skein_filename, "can't open skein file", FALSE, read_skein_pass_2, 0);

}

void read_skein_pass_1(char *line, text_file_position *tfp) { read_skein_line(line, 1); }

void read_skein_pass_2(char *line, text_file_position *tfp) { read_skein_line(line, 2); }

The function build skein tree is.

The function read skein pass 1 is.

The function read skein pass 2 is.

3/sol - Solution Deviser x3 71

x3. The Skein is stored as an XML �le. Its format was devised by Andrew Hunter in the early days of the
Inform user interface for Mac OS X, and this was then adopted by the user interface on other platforms, so
that projects could be freely exchanged between users regardless of their platforms. That makes it a kind
of standard, but it isn't at present a public or documented one. We shall therefore make few assumptions
about it.

void read_skein_line(char *line, int pass) {

char node_id[MAX_NODE_ID_LENGTH];

find_node_ID_in_tag(line, "item", node_id, MAX_NODE_ID_LENGTH, TRUE);

if (pass == 1) {

if (node_id[0]) hCreate a new skein tree node with this node ID 4i;
if (current_skein_node) {

hLook for a \command" tag and set the command text from it 6i;
hLook for an \annotation" tag and set the annotation text from it 7i;

}

} else {

if (node_id[0]) current_skein_node = find_node_with_ID(node_id);

if (current_skein_node) {

char child_node_id[MAX_NODE_ID_LENGTH];

find_node_ID_in_tag(line, "child", child_node_id, MAX_NODE_ID_LENGTH, TRUE);

if (child_node_id[0]) {

skein_node *new_child = find_node_with_ID(child_node_id);

if (new_child == NULL) {

error("the skein file is malformed (B)");

return;

}

hMake the parent-child relationship 5i;
}

}

}

}

The function read skein line is.

x4. Note that the root is the �rst knot in the Skein �le.

hCreate a new skein tree node with this node ID 4i �
current_skein_node = CREATE(skein_node);

if (root_skn == NULL) root_skn = current_skein_node;

strcpy(current_skein_node->id, node_id);

strcpy(current_skein_node->command, "");

strcpy(current_skein_node->annotation, "");

current_skein_node->branch_count = -1;

current_skein_node->branch_parent = NULL;

current_skein_node->parent = NULL;

current_skein_node->child = NULL;

current_skein_node->sibling = NULL;

current_skein_node->relevant = FALSE;

if (trace_mode) printf("Creating knot with ID '%s'\n", node_id);

This code is used in x3.

3/sol - Solution Deviser x5 72

x5. We make new_child the youngest child of current_skein_mode:

hMake the parent-child relationship 5i �
new_child->parent = current_skein_node;

if (current_skein_node->child == NULL) {

current_skein_node->child = new_child;

} else {

skein_node *familial = current_skein_node->child;

while (familial->sibling) familial = familial->sibling;

familial->sibling = new_child;

}

This code is used in x3.

x6.

hLook for a \command" tag and set the command text from it 6i �
char *p = current_skein_node->command;

if (find_text_of_tag(line, "command", p, MAX_COMMAND_LENGTH, FALSE)) {

if (trace_mode) printf("Raw command '%s'\n", p);

undo_XML_escapes_in_string(p);

convert_string_to_upper_case(p);

if (trace_mode) printf("Processed command '%s'\n", p);

}

This code is used in x3.

x7.

hLook for an \annotation" tag and set the annotation text from it 7i �
char *p = current_skein_node->annotation;

if (find_text_of_tag(line, "annotation", p, MAX_ANNOTATION_LENGTH, FALSE)) {

if (trace_mode) printf("Raw annotation '%s'\n", p);

undo_XML_escapes_in_string(p);

if (trace_mode) printf("Processed annotation '%s'\n", p);

}

This code is used in x3.

3/sol - Solution Deviser x8 73

x8. Try to �nd a node ID element attached to a particular tag on the line:

int find_node_ID_in_tag(char *line, char *tag,

char *write_to, int max_length, int abort_not_trim) {

char portion1[MAX_TEXT_FILE_LINE_LENGTH], portion2[MAX_TEXT_FILE_LINE_LENGTH];

char prototype[64];

strcpy(prototype, "%[^<]<");

strcat(prototype, tag);

strcat(prototype, " nodeId=\"%[^\"]\"");

write_to[0] = 0;

if (sscanf(line, prototype, portion1, portion2) == 2) {

if ((strlen(portion2) >= max_length-1) && (abort_not_trim)) {

error("the skein file is malformed (C)");

return FALSE;

}

strncpy(write_to, portion2, max_length-1); write_to[max_length-1] = 0;

return TRUE;

}

return FALSE;

}

The function �nd node ID in tag is.

x9. Try to �nd the text of a particular tag on the line:

int find_text_of_tag(char *line, char *tag,

char *write_to, int max_length, int abort_not_trim) {

char portion1[MAX_TEXT_FILE_LINE_LENGTH], portion2[MAX_TEXT_FILE_LINE_LENGTH],

portion3[MAX_TEXT_FILE_LINE_LENGTH];

char prototype[64];

strcpy(prototype, "%[^>]>%[^<]</");

strcat(prototype, tag);

strcat(prototype, "%s");

if (sscanf(line, prototype, portion1, portion2, portion3) == 3) {

if ((strlen(portion2) >= max_length-1) && (abort_not_trim)) {

error("the skein file is malformed (C)");

return FALSE;

}

strncpy(write_to, portion2, max_length-1); write_to[max_length-1] = 0;

if (trace_mode) printf("found %s = '%s'\n", tag, portion2);

return TRUE;

}

return FALSE;

}

The function �nd text of tag is.

3/sol - Solution Deviser x10 74

x10. This is not very e�cient, but:

skein_node *find_node_with_ID(char *id) {

skein_node *skn;

LOOP_OVER(skn, skein_node)

if (strcmp(id, skn->id) == 0)

return skn;

return NULL;

}

The function �nd node with ID is.

x11. Finally, we needed the following string hackery:

void convert_string_to_upper_case(char *p) {

int i;

for (i=0; p[i]; i++) p[i]=toupper(p[i]);

}

The function convert string to upper case is.

x12. and:

void undo_XML_escapes_in_string(char *p) {

int i = 0, j = 0;

while (p[i]) {

if (p[i] == '&') {

char xml_escape[16];

int k=0;

while ((p[i+k] != 0) && (p[i+k] != ';') && (k<14)) {

xml_escape[k] = tolower(p[i+k]); k++;

}

xml_escape[k] = p[i+k]; k++; xml_escape[k] = 0;

hWe have identi�ed an XML escape 13i;
}

p[j++] = p[i++];

}

p[j++] = 0;

}

The function undo XML escapes in string is.

x13. Note that all other ampersand-escapes are passed through verbatim.

hWe have identi�ed an XML escape 13i �
char c = 0;

if (strcmp(xml_escape, "<") == 0) c = '<';

if (strcmp(xml_escape, ">") == 0) c = '>';

if (strcmp(xml_escape, "&") == 0) c = '&';

if (strcmp(xml_escape, "'") == 0) c = '\'';

if (strcmp(xml_escape, """) == 0) c = '\"';

if (c) { p[j++] = c; i += strlen(xml_escape); continue; }

This code is used in x12.

3/sol - Solution Deviser x14 75

x14. Step 2: identify the relevant lines. We aim to show how to reach all knots in the Skein annotated
with text which begins with three asterisks. (We trim those asterisks away from the annotation once we
spot them: they have served their purpose.) A knot is \relevant" if and only if one of its (direct or indirect)
children is marked with three asterisks in this way.

void identify_relevant_lines(void) {

skein_node *skn;

LOOP_OVER(skn, skein_node) {

char *p = skn->annotation;

if (trace_mode) printf("Knot %s is annotated '%s'\n", skn->id, p);

if ((p[0] == '*') && (p[1] == '*') && (p[2] == '*')) {

int i = 3, j; while (p[i] == ' ') i++;

for (j=0; p[i]; i++) p[j++] = p[i]; p[j] = 0;

skein_node *knot;

for (knot = skn; knot; knot = knot->parent) {

knot->relevant = TRUE;

if (trace_mode) printf("Knot %s is relevant\n", knot->id);

}

}

}

}

The function identify relevant lines is.

x15. Step 3: pruning irrelevant lines out of the tree. When the loop below concludes, the relevant
nodes are exactly those in the component of the tree root, because:

(a) No irrelevant node can be the child of a relevant one; and no relevant node can be the child of an
irrelevant one by de�nition. So the tree falls into components each of which is fully relevant or fully not.

(b) Since we never break any relevant-parent-relevant-child relationships, the number of components con-
taining at least one relevant node is unchanged.

(c) Since the Skein is initially a tree and not a forest, we start with just one component, and it contains
the tree root, which is known to be relevant (we would have given up with an error message if not).

(d) And therefore at the end of the loop the \tree" consists of a single component headed by the tree root
and containing all of the relevant nodes, together with any number of other components each of which
contains only irrelevant ones.

void prune_irrelevant_lines(void) {

skein_node *skn;

LOOP_OVER(skn, skein_node)

if ((skn->relevant == FALSE) && (skn->parent))

hDelete this node from its parent 16i;
}

The function prune irrelevant lines is.

3/sol - Solution Deviser x16 76

x16.

hDelete this node from its parent 16i �
if (skn->parent->child == skn) {

skn->parent->child = skn->sibling;

} else {

skein_node *skn2 = skn->parent->child;

while ((skn2) && (skn2->sibling != skn)) skn2 = skn2->sibling;

if ((skn2) && (skn2->sibling == skn)) skn2->sibling = skn->sibling;

}

skn->parent = NULL;

skn->sibling = NULL;

This code is used in x15.

x17. Step 4: writing the solution �le.

void write_solution_file(char *walkthrough_filename) {

FILE *SOL = fopen(walkthrough_filename, "w");

if (SOL == NULL)

fatal_fs("unable to open destination for solution text file",

walkthrough_filename);

fprintf(SOL, "Solution to \""); copy_placeholder_to("TITLE", SOL);

fprintf(SOL, "\" by "); copy_placeholder_to("AUTHOR", SOL); fprintf(SOL, "\n\n");

recursively_solve(SOL, root_skn, NULL);

fclose(SOL);

}

The function write solution �le is.

x18. The following prints commands to the solution �le from the position skn { which means just after
typing its command { with the aim of reaching all relevant endings we can get to from there.

void recursively_solve(FILE *SOL, skein_node *skn, skein_node *last_branch) {

hFollow the skein down until we reach a divergence, if we do 19i;
hPrint the various alternatives from this knot where the threads diverge 20i;
hShow the solutions down each of these alternative lines in turn 21i;

}

The function recursively solve is.

x19. If there's only a single option from here, we could print it and then call recursively_solve down
from it. That would make the code shorter and clearer, perhaps, but it would clobber the C stack: our
recursion depth might be into the tens of thousands on long solution �les. So we tail-recurse instead of
calling ourselves, so to speak, and just run down the thread until we reach a choice. (If we never do reach a
choice, we can return { there is nowhere else to reach.)

hFollow the skein down until we reach a divergence, if we do 19i �
while ((skn->child == NULL) || (skn->child->sibling == NULL)) {

if (skn->child == NULL) return;

if (skn->child->sibling == NULL) {

skn = skn->child;

write_command(SOL, skn, NORMAL_COMMAND);

}

}

This code is used in x18.

3/sol - Solution Deviser x20 77

x20. Thus we are here only when there are at least two alternative commands we might use from position
skn.

hPrint the various alternatives from this knot where the threads diverge 20i �
fprintf(SOL, "Choice:\n");

int branch_counter = 1;

skein_node *option;

for (option = skn->child; option; option = option->sibling)

if (option->child == NULL) {

write_command(SOL, option, BRANCH_TO_END_COMMAND);

} else {

option->branch_count = branch_counter++;

option->branch_parent = last_branch;

write_command(SOL, option, BRANCH_TO_LINE_COMMAND);

}

This code is used in x18.

x21.

hShow the solutions down each of these alternative lines in turn 21i �
skein_node *option;

for (option = skn->child; option; option = option->sibling)

if (option->child) {

fprintf(SOL, "\nBranch (");

write_branch_name(SOL, option);

fprintf(SOL, ")\n");

recursively_solve(SOL, option, option);

}

This code is used in x18.

x22. Writing individual commands and branch descriptions.

de�ne NORMAL_COMMAND 1

de�ne BRANCH_TO_END_COMMAND 2

de�ne BRANCH_TO_LINE_COMMAND 3

void write_command(FILE *SOL, skein_node *cmd_skn, int form) {

if (form != NORMAL_COMMAND) fprintf(SOL, " ");

fprintf(SOL, "%s", cmd_skn->command);

if (form != NORMAL_COMMAND) {

fprintf(SOL, " -> ");

if (form == BRANCH_TO_LINE_COMMAND) {

fprintf(SOL, "go to branch (");

write_branch_name(SOL, cmd_skn);

fprintf(SOL, ")");

}

else fprintf(SOL, "end");

}

if (cmd_skn->annotation[0]) fprintf(SOL, " ... %s", cmd_skn->annotation);

fprintf(SOL, "\n");

}

The function write command is.

3/sol - Solution Deviser x23 78

x23. For instance, at the third option from a thread which ran back to being the second option from
a thread which ran back to being the seventh option from the original position, the following would print
\7.2.3". Note that only the knots representing the positions after commands which make a choice are labelled
in this way.

void write_branch_name(FILE *SOL, skein_node *skn) {

if (skn->branch_parent) {

write_branch_name(SOL, skn->branch_parent);

fprintf(SOL, ".");

}

fprintf(SOL, "%d", skn->branch_count);

}

The function write branch name is.

Links and Auxiliary Files 3/links

Purpose

To manage links to auxiliary �les, and placeholder variables.

3/links.x1 Registration; x2-3 Linking; x4-5 Links; x6 Cover image; x7 Releasing

De�nitions

{1. Auxiliary �les are for items bundled up with the release but which are deliberately made accessible for
the eventual player: things such as maps or manuals. cblorb needs to know about these only when releasing
a website; they are also recorded in an iFiction record, but cblorb does not create that (ni does).

typedef struct auxiliary_file {

char relative_URL[MAX_FILENAME_LENGTH];

char full_filename[MAX_FILENAME_LENGTH];

char aux_leafname[MAX_FILENAME_LENGTH];

char description[MAX_FILENAME_LENGTH];

char format[MAX_EXTENSION_LENGTH]; e.g., \jpg", \pdf"

MEMORY_MANAGEMENT

} auxiliary_file;

The structure auxiliary �le is private to this section.

x1. Registration. The format text is set to a lower-case version of the �lename extension, and the URL
to the �lename itself; except when there is no extension, so that the auxiliary resource is a mini-website in
a subfolder of the release website. In that case the format is link and the URL is to the index �le in the
subfolder.

void create_auxiliary_file(char *filename, char *description) {

auxiliary_file *aux = CREATE(auxiliary_file);

strcpy(aux->description, description);

strcpy(aux->full_filename, filename);

char *ext = get_filename_extension(filename);

char *leaf = get_filename_leafname(filename);

if (ext[0] == '.') {

strcpy(aux->relative_URL, filename);

if (strlen(ext + 1) >= MAX_EXTENSION_LENGTH - 1) {

error("auxiliary file has overlong extension"); return;

}

strcpy(aux->format, ext + 1);

int k; for (k=0; aux->format[k]; k++) aux->format[k] = tolower(aux->format[k]);

} else {

strcpy(aux->format, "link");

sprintf(aux->relative_URL, "%s%cindex.html", filename, SEP_CHAR);

}

strcpy(aux->aux_leafname, leaf);

printf("! Auxiliary file: <%s> = <%s>\n", filename, description);

}

The function create auxiliary �le is called from 1/blurb.

3/links - Links and Auxiliary Files x2 80

x2. Linking. The list of links to auxiliary resources is written using ... list entry tags, for
convenience of CSS styling.

void expand_AUXILIARY_variable(FILE *COPYTO) {

auxiliary_file *aux;

LOOP_OVER(aux, auxiliary_file) {

fprintf(COPYTO, "");

download_link(COPYTO,

aux->description, aux->full_filename, aux->aux_leafname, aux->format);

fprintf(COPYTO, "");

}

add_links_to_requested_resources(COPYTO);

}

The function expand AUXILIARY variable is.

x3. On some of the pages produced by cblorb the story �le itself looks like another auxiliary resource, but
it's produced thus:

void expand_DOWNLOAD_variable(FILE *COPYTO) {

char target_pathname[MAX_FILENAME_LENGTH]; eventual pathname of Blorb �le written

sprintf(target_pathname, "%s%c%s", release_folder, SEP_CHAR, read_placeholder("STORYFILE"));

download_link(COPYTO, "Story File", target_pathname, read_placeholder("STORYFILE"), "Blorb");

}

The function expand DOWNLOAD variable is.

x4. Links. This routine, then, handles either kind of link.

void download_link(FILE *COPYTO, char *desc, char *filename, char *relative_url, char *form) {

int size_up = TRUE;

if (strcmp(form, "link") == 0) size_up = FALSE;

fprintf(COPYTO, "%s ", relative_url, desc);

open_style(COPYTO, "filetype");

fprintf(COPYTO, "(%s", form);

if (size_up) {

long int size = -1L;

if (strcmp(desc, "Story File") == 0) size = (long int) blorb_file_size;

else size = file_size(filename);

if (size != -1L) hWrite a description of the rough �le size 5i
}

fprintf(COPYTO, ")");

close_style(COPYTO, "filetype");

}

The function download link is called from 3/rel.

3/links - Links and Auxiliary Files x5 81

x5. We round down to the nearest KB, MB, GB, TB or byte, as appropriate. Although this will describe
a 1-byte auxiliary �le as \1 bytes", the contingency seems remote.

hWrite a description of the rough �le size 5i �
char *units = " bytes";

long int remainder = 0;

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "KB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "MB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "GB"; }

if (size > 1024L) { remainder = size % 1024L; size /= 1024L; units = "TB"; }

fprintf(COPYTO, ", %d", (int) size);

if ((size < 100L) && (remainder >= 103L)) fprintf(COPYTO, ".%d", (int) (remainder/103L));

fprintf(COPYTO, "%s", units);

This code is used in x4.

x6. Cover image. Note that if the large cover image is a PNG, so is the small (thumbnail) version, and
vice versa { supplying \Cover.jpg" and \Small Cover.png" will not work.

void expand_COVER_variable(FILE *COPYTO) {

if (cover_exists) {

char *format = "png"; if (cover_is_in_JPEG_format) format = "jpg";

fprintf(COPYTO, "",

format, format);

}

}

The function expand COVER variable is.

x7. Releasing. When we generate a website, we need to copy the auxiliary �les into it (though not
mini-websites: the user will have to do that).

void request_copy_of_auxiliaries(void) {

auxiliary_file *aux;

LOOP_OVER(aux, auxiliary_file)

if (strcmp(aux->format, "link") != 0) {

if (trace_mode)

printf("! COPY <%s> as <%s>\n", aux->full_filename, aux->aux_leafname);

request_copy(aux->full_filename, aux->aux_leafname);

}

}

The function request copy of auxiliaries is called from 3/rel.

Placeholders 3/place

Purpose

To manage placeholder variables.

3/place.x1-7 Initial values

De�nitions

{1. Placeholders are markers such as \[AUTHOR]", found in the template �les for making web pages.
(\AUTHOR" would be the name of this one; the use of capital letters is customary but not required.) Most
of these can be set to arbitrary texts by use of the placeholder command in the blurb �le, but a few are
\reserved" by cblorb:

de�ne SOURCE_RPL 1

de�ne SOURCENOTES_RPL 2

de�ne SOURCELINKS_RPL 3

de�ne COVER_RPL 4

de�ne DOWNLOAD_RPL 5

de�ne AUXILIARY_RPL 6

de�ne PAGENUMBER_RPL 7

de�ne PAGEEXTENT_RPL 8

typedef struct placeholder {

char pl_name[MAX_VAR_NAME_LENGTH];

char pl_contents[MAX_FILENAME_LENGTH]; current value

int reservation; one of the *_RPL values above, or 0 for unreserved

int locked; currently being expanded: locked to prevent mise-en-abyme

MEMORY_MANAGEMENT

} placeholder;

The structure placeholder is private to this section.

x1. Initial values. The BLURB refers here to back-cover-style text, and not to the \blurb" �le which we
are acting on.

void initialise_placeholders(void) {

set_placeholder_to("SOURCE", "", SOURCE_RPL);

set_placeholder_to("SOURCENOTES", "", SOURCENOTES_RPL);

set_placeholder_to("SOURCELINKS", "", SOURCELINKS_RPL);

set_placeholder_to("COVER", "", COVER_RPL);

set_placeholder_to("DOWNLOAD", "", DOWNLOAD_RPL);

set_placeholder_to("AUXILIARY", "", AUXILIARY_RPL);

set_placeholder_to("PAGENUMBER", "", PAGENUMBER_RPL);

set_placeholder_to("PAGEEXTENT", "", PAGEEXTENT_RPL);

set_placeholder_to("CBLORBERRORS", "", 0);

set_placeholder_to("INBROWSERPLAY", "", 0);

set_placeholder_to("BLURB", "", 0);

set_placeholder_to("TEMPLATE", "Standard", 0);

set_placeholder_to("GENERATOR", VERSION, 0);

set_placeholder_to("BASE64_TOP", "", 0);

set_placeholder_to("BASE64_TAIL", "", 0);

3/place - Placeholders x2 83

set_placeholder_to("JAVASCRIPTPRELUDE", JAVASCRIPT_PRELUDE, 0);

set_placeholder_to("FONTTAG", FONT_TAG, 0);

initialise_time_variables();

}

The function initialise placeholders is called from 1/main.

x2. We don't need any very e�cient system for parsing these names, as there are typically fewer than 20
placeholders at a time.

placeholder *find_placeholder(char *name) {

placeholder *wv;

LOOP_OVER(wv, placeholder)

if (strcmp(wv->pl_name, name) == 0)

return wv;

return NULL;

}

char *read_placeholder(char *name) {

placeholder *wv = find_placeholder(name);

if (wv) return wv->pl_contents;

return NULL;

}

The function �nd placeholder is.

The function read placeholder is called from 1/main, 1/blurb, 3/rel, 3/links and 3/web.

x3. There are no \types" of these placeholders. When they hold numbers, it's only as the text of a number
written out in decimal, so:

void set_placeholder_to_number(char *var, int v) {

char temp_digits[64];

sprintf(temp_digits, "%d", v);

set_placeholder_to(var, temp_digits, 0);

}

The function set placeholder to number is called from 1/main and 1/blurb.

x4. And here we set a given placeholder to a given text value. If it doesn't already exist, it will be created.
A reserved placeholder can then never again be set, and since it will have been set at creation time (above),
it follows that a reserved placeholder cannot be set with the placeholder command of a blurb �le.

void set_placeholder_to(char *var, char *text, int reservation) {

set_placeholder_to_inner(var, text, reservation, FALSE);

}

void append_to_placeholder(char *var, char *text) {

set_placeholder_to_inner(var, text, 0, TRUE);

}

The function set placeholder to is called from 1/main, 1/blurb and 3/rel.

The function append to placeholder is called from 1/text, 1/blurb and 3/rel.

3/place - Placeholders x5 84

x5. Where:

void set_placeholder_to_inner(char *var, char *text, int reservation, int extend) {

if (strlen(var) >= MAX_VAR_NAME_LENGTH-1) { error("variable name too long"); return; }

if (trace_mode) printf("! [%s] <-- \"%s\"\n", var, (text)?text:"");

placeholder *wv = find_placeholder(var);

if ((wv) && (reservation > 0)) { error("tried to set reserved variable"); return; }

if (wv == NULL) {

wv = CREATE(placeholder);

if (trace_mode) printf("! Creating [%s]\n", var);

strcpy(wv->pl_name, var);

(wv->pl_contents)[0] = 0;

wv->reservation = reservation;

}

int L = strlen(text) + 1;

if (extend) L += strlen(wv->pl_contents);

if (L >= MAX_FILENAME_LENGTH) { error("placeholder text too long"); return; }

if (extend) strcat(wv->pl_contents, text);

else strcpy(wv->pl_contents, text);

}

The function set placeholder to inner is.

x6. And that just leaves writing the output of these placeholders. The scenario here is that we're copying
HTML over to make a new web page, but we've hit text in the template like \[AUTHOR]". We output the
value of this placeholder instead of that literal text. The reserved placeholders output as special gadgets
instead of any �xed text, so those all call suitable routines elsewhere in cblorb.

If the placeholder name isn't known to us, we print the text back, so that the original material will be
unchanged. (This is in case the original contains uses of square brackets which aren't for placeholding.)

void copy_placeholder_to(char *var, FILE *COPYTO) {

int multiparagraph_mode = FALSE;

if (strcmp(var, "BLURB") == 0) multiparagraph_mode = TRUE;

placeholder *wv = find_placeholder(var);

if ((wv == NULL) || (wv->locked)) { fprintf(COPYTO, "[%s]", var); return; }

wv->locked = TRUE;

if (multiparagraph_mode) fprintf(COPYTO, "<p>");

switch (wv->reservation) {

case 0: hCopy an ordinary unreserved placeholder 7i; break;

case SOURCE_RPL: expand_SOURCE_or_SOURCENOTES_variable(COPYTO, FALSE); break;

case SOURCENOTES_RPL: expand_SOURCE_or_SOURCENOTES_variable(COPYTO, TRUE); break;

case SOURCELINKS_RPL: expand_SOURCELINKS_variable(COPYTO); break;

case COVER_RPL: expand_COVER_variable(COPYTO); break;

case DOWNLOAD_RPL: expand_DOWNLOAD_variable(COPYTO); break;

case AUXILIARY_RPL: expand_AUXILIARY_variable(COPYTO); break;

case PAGENUMBER_RPL: expand_PAGENUMBER_variable(COPYTO); break;

case PAGEEXTENT_RPL: expand_PAGEEXTENT_variable(COPYTO); break;

}

if (multiparagraph_mode) fprintf(COPYTO, "</p>");

wv->locked = FALSE;

}

The function copy placeholder to is called from 3/sol and 3/web.

3/place - Placeholders x7 85

x7. Note that the [BLURB] placeholder { which holds the story description, and is like a back cover blurb
for a book; the name is not related to the release instructions format { may consist of multiple paragraphs.
If so, then they will be divided by
, since that's the XML convention. But we want to translate those
breaks to </p><p>, closing an old paragraph and opening a new one, because that will make the blurb text
much easier to style with a CSS �le. It follows that [BLURB] should always appear in templates within an
HTML paragraph.

hCopy an ordinary unreserved placeholder 7i �
int i; char *p = wv->pl_contents;

for (i=0; p[i]; i++) {

if ((p[i] == '<') && (p[i+1] == 'b') && (p[i+2] == 'r') &&

(p[i+3] == '/') && (p[i+4] == '>') && (multiparagraph_mode)) {

fprintf(COPYTO, "</p><p>"); i += 4; continue;

}

if (p[i] == '[') {

char inner_name[MAX_VAR_NAME_LENGTH+1];

int j = i+1, k = 0, expanded = FALSE; inner_name[0] = 0;

for (; p[j]; j++) {

if ((p[j] == '[') || (p[j] == ' ')) break;

if (p[j] == ']') {

i = j;

copy_placeholder_to(inner_name, COPYTO);

expanded = TRUE;

break;

}

inner_name[k++] = p[j]; inner_name[k] = 0;

if (k >= MAX_VAR_NAME_LENGTH) break;

}

if (expanded) continue;

}

if (((p[i] == '\x0a') || (p[i] == '\x0d') || (p[i] == '\x7f')) &&

(multiparagraph_mode)) {

fprintf(COPYTO, "<p>"); continue;

}

fprintf(COPYTO, "%c", p[i]);

}

This code is used in x6.

Templates 3/templ

Purpose

To manage templates for website generation.

3/templ.x1-4 De�ning template paths; x5-6 Searching for template �les

De�nitions

{1. Template paths de�ne, in order of priority, where to look for templates.

typedef struct template_path {

char template_repository[MAX_FILENAME_LENGTH]; pathname of folder of repository

MEMORY_MANAGEMENT

} template_path;

The structure template path is private to this section.

{2. Templates are the things themselves.

typedef struct template {

char template_name[MAX_FILENAME_LENGTH]; e.g., \Standard"

struct template_path *template_location;

char latest_use[MAX_FILENAME_LENGTH]; �lename most recently sought from it

MEMORY_MANAGEMENT

} template;

The structure template is private to this section.

x1. De�ning template paths. The following implements the Blurb command \template path".

int no_template_paths = 0;

void new_template_path(char *pathname) {

template_path *tp = CREATE(template_path);

strcpy(tp->template_repository, pathname);

if (trace_mode)

printf("! Template search path %d: <%s>\n", ++no_template_paths, pathname);

}

The function new template path is called from 1/blurb.

3/templ - Templates x2 87

x2. The following searches for a named �le in a named template, returning the template path which holds
the template if it exists. This might look a pretty odd thing to do { weren't we looking the �le itself? But
the answer is that seek_file_in_template_paths is really used to detect the presence of templates, not of
�les.

template_path *seek_file_in_template_paths(char *name, char *leafname) {

template_path *tp;

LOOP_OVER(tp, template_path) {

char possible[MAX_FILENAME_LENGTH];

sprintf(possible, "%s%c%s%c%s",

tp->template_repository, SEP_CHAR, name, SEP_CHAR, leafname);

if (file_exists(possible)) return tp;

}

return NULL;

}

The function seek �le in template paths is.

x3. And this is where that happens. Suppose we need to locate the template \Molybdenum". We ought
to do this by looking for a directory of that name among the template paths, but searching for directories is
a little tricky to do in ANSI C in a way which will work on all platforms. So instead we look for any of the
four �les which compulsorily ought to exist (or the one which does in the case of an interpreter; those look
rather like website templates).

template *find_template(char *name) {

template *t;

hIs this a template we already know? 4i;
template_path *tp = seek_file_in_template_paths(name, "index.html");

if (tp == NULL) tp = seek_file_in_template_paths(name, "source.html");

if (tp == NULL) tp = seek_file_in_template_paths(name, "style.css");

if (tp == NULL) tp = seek_file_in_template_paths(name, "(extras).txt");

if (tp == NULL) tp = seek_file_in_template_paths(name, "(manifest).txt");

if (tp) {

t = CREATE(template);

strcpy(t->template_name, name);

t->template_location = tp;

return t;

}

return NULL;

}

The function �nd template is.

x4. It reduces pointless �le accesses to cache the results, so:

hIs this a template we already know? 4i �
LOOP_OVER(t, template)

if (strcmp(name, t->template_name) == 0)

return t;

This code is used in x3.

3/templ - Templates x5 88

x5. Searching for template �les. If we can't �nd the �le name in the template speci�ed, we try looking
inside \Standard" instead (if we can �nd a template of that name).

int template_doesnt_exist = FALSE;

char *find_file_in_named_template(char *name, char *needed) {

template *t = find_template(name), *Standard = find_template("Standard");

if (t == NULL) {

if (template_doesnt_exist == FALSE) {

errorf_1s(

"Websites and play-in-browser interpreter web pages are created "

"using named templates. (Basic examples are built into the Inform "

"application. You can also create your own, putting them in the "

"'Templates' subfolder of the project's Materials folder.) Each "

"template has a name. On this Release, I tried to use the "

"'%s' template, but couldn't find a copy of it anywhere.", name);

}

template_doesnt_exist = TRUE;

}

char *path = try_single_template(t, needed);

if ((path == NULL) && (Standard))

path = try_single_template(Standard, needed);

return path;

}

The function �nd �le in named template is called from 3/rel.

x6. Where, �nally:

char *try_single_template(template *t, char *needed) {

if (t == NULL) return NULL;

sprintf(t->latest_use, "%s%c%s%c%s",

t->template_location->template_repository, SEP_CHAR, t->template_name, SEP_CHAR, needed);

if (trace_mode) printf("! Trying <%s>\n", t->latest_use);

if (file_exists(t->latest_use)) return t->latest_use;

return NULL;

}

The function try single template is.

Website Maker 3/web

Purpose

To accompany a release with a mini-website.

3/web.x1-6 Styling with CSS; x7-9 Making an HTML page from a template; x10 Rendering the source text as HTML pages;

x11-19 Pass 1: scanning the source for tables and headings; x20-55 Pass 2: writing the source text pages

De�nitions

{1. Making a website is not especially tricky. The di�cult part is typesetting the source text into it, if
that's been requested. We will need to do that by scanning the source text for typographically signi�cant
structures:

de�ne ABBREVIATED_HEADING_LENGTH 1000

typedef struct table {

int table_line_start; line number in the source where the table heading appears

int table_line_end; line number of the blank line which marks the end of the table body

MEMORY_MANAGEMENT

} table;

typedef struct heading {

int heading_line; line number in the source at which the heading appears

int heading_level; a low number makes this a more signi�cant heading than a high number

int heading_has_content; is there anything other than white space before the next heading?

struct segment *heading_to_segment; which segment contains the heading

char heading_text[ABBREVIATED_HEADING_LENGTH + 1]; truncated if necessary for the contents

MEMORY_MANAGEMENT

} heading;

The structure table is private to this section.

The structure heading is private to this section.

{2. Segments are used to divide the source text into pieces of what we hope will be a manageable size.

It is not true that the source text is partitioned exactly by segments. The topmost segment begins at the
�rst heading in the source text. So there will usually be at least a few prefatory lines before this point {
perhaps the title, some extension inclusions, and so on { and it's even possible, if there are no headings at
all, for there to be no segments so that the entire source text is \prefatory". If we have three segments, then,
we will split the source text into four HTML �les:

source0.html { \Page 1 of 4", the preface and then contents
source1.html { \Page 2 of 4", �rst segment (with allocation ID 0)
source2.html { \Page 3 of 4", second segment (with allocation ID 1)
source3.html { \Page 4 of 4", third segment (with allocation ID 2)

Note that the prefatory lines contain no headings, that every heading belongs to a unique segment (hence
the heading_to_segment �eld above) and that the top line of every segment is always a heading. A single
segment can contain multiple headings, because we run on a heading if it contains no content except white
space: this is so that, e.g.,

Part I - Up the Amazon

Section I.1 - The lower delta

Rickety Jetty is a room. [...]

3/web - Website Maker x1 90

would be combined into a single segment, rather than a pointlessly short segment just containing the \Part
I" heading followed by a second segment opening with \Section I.1".

typedef struct segment {

int begins_at; line number on which the segment begins

int ends_at; line number of the last line of the segment, or MAX_SOURCE_TEXT_LINES if it runs to the end

int documentation; is this in the documentation of an extension?

struct text_file_position start_position_in_file; within the source text

struct heading *most_recent_heading; or NULL if there hasn't been one

struct table *most_recent_table; or NULL if there hasn't been one

char segment_url[MAX_FILENAME_LENGTH];

char *link_home;

char *link_contents;

char *link_previous;

char *link_next;

int page_number;

MEMORY_MANAGEMENT

} segment;

The structure segment is private to this section.

x1. Styling with CSS. We try to give the template �les as much freedom as possible to de�ne whatever
CSS styles they need, but the template can't see inside the text of variables, so cblorb itself has to choose
CSS styles for anything interesting that is displayed there. We use the following style names, which a CSS
�le is required to de�ne:

columnhead { the heading of a column in a Table in I7 source text
comment { comments in I7 source text
filetype { the \(pdf, 150KB)" text annotating links
heading { heading or top line of a Table in I7 source text
i6code { verbatim I6 code in I7 source text
notecue { footnote cues which annotate I7 source text
notesheading { the little \Notes" subheading above the footnotes to source text
notetext { texts of footnotes which annotate I7 source text
quote { double-quoted text in I7 source text
substitution { text substitution inside double-quoted text in I7 source text

In addition it must provide paragraph classes indent0 to indent9 for code which begins at tab positions 0
to 9 (see below). Although \Standard.css" contains other names of classes, these are only needed because
\Standard.html" or \Standard-Source.html" say so: cblorb does not mandate them.

3/web - Website Maker x2 91

x2. In case CSS is not available, we use old-fashioned HTML alternatives:

void open_style(FILE *write_to, char *new) {

if (new == NULL) return;

if (use_css_code_styles) {

fprintf(write_to, "", new);

} else {

if (strcmp(new, "columnhead") == 0) fprintf(write_to, "<u>");

if (strcmp(new, "comment") == 0) fprintf(write_to, "");

if (strcmp(new, "filetype") == 0) fprintf(write_to, "<small>");

if (strcmp(new, "heading") == 0) fprintf(write_to, "");

if (strcmp(new, "i6code") == 0) fprintf(write_to, "");

if (strcmp(new, "notecue") == 0) fprintf(write_to, "<sup>");

if (strcmp(new, "notesheading") == 0) fprintf(write_to, "<i>");

if (strcmp(new, "notetext") == 0) fprintf(write_to, "");

if (strcmp(new, "quote") == 0) fprintf(write_to, "");

if (strcmp(new, "substitution") == 0) fprintf(write_to, "");

}

}

void close_style(FILE *write_to, char *old) {

if (old == NULL) return;

if (use_css_code_styles) {

fprintf(write_to, "");

} else {

if (strcmp(old, "columnhead") == 0) fprintf(write_to, "</u>");

if (strcmp(old, "comment") == 0) fprintf(write_to, "");

if (strcmp(old, "filetype") == 0) fprintf(write_to, "</small>");

if (strcmp(old, "heading") == 0) fprintf(write_to, "");

if (strcmp(old, "i6code") == 0) fprintf(write_to, "");

if (strcmp(old, "notecue") == 0) fprintf(write_to, "</sup>");

if (strcmp(old, "notesheading") == 0) fprintf(write_to, "</i>");

if (strcmp(old, "notetext") == 0) fprintf(write_to, "");

if (strcmp(old, "quote") == 0) fprintf(write_to, "");

if (strcmp(old, "substitution") == 0) fprintf(write_to, "");

}

}

The function open style is called from 3/links.

The function close style is called from 3/links.

x3. In what follows, we will need to have a current typographic style for text, and may need to change it at
any point inside the paragraph. We represent the current style by the global variable current_style, which
is either NULL (for ordinary text) or the name of one of the styles above.

char *current_style = NULL;

void change_style(FILE *write_to, char *new) {

if (current_style) close_style(write_to, current_style);

open_style(write_to, new);

current_style = new;

}

The function change style is.

3/web - Website Maker x4 92

x4. We also use CSS to manage code indentation, when it's available, since this can handle hanging inden-
tation much better.

The block of source text displayed on a web page should be framed within:

void open_code(FILE *write_to) {

if (use_css_code_styles == FALSE) {

fprintf(write_to, "<p>");

}

}

void close_code(FILE *write_to) {

if (use_css_code_styles == FALSE) {

fprintf(write_to, "</p>");

}

}

The function open code is.

The function close code is.

x5. Each individual paragraph of the source text (which looks like a line to us) should then be framed
within:

void open_code_paragraph(FILE *write_to, int indentation) {

if (use_css_code_styles) {

char *classname = "";

switch (indentation) {

case 0: classname = "indent0"; break;

case 1: classname = "indent1"; break;

case 2: classname = "indent2"; break;

case 3: classname = "indent3"; break;

case 4: classname = "indent4"; break;

case 5: classname = "indent5"; break;

case 6: classname = "indent6"; break;

case 7: classname = "indent7"; break;

case 8: classname = "indent8"; break;

default: classname = "indent9"; break;

}

fprintf(write_to, "<p class=\"%s\">", classname);

} else {

int i;

for (i=0; i<indentation; i++) fprintf(write_to, " ");

}

}

void close_code_paragraph(FILE *write_to) {

if (use_css_code_styles) {

fprintf(write_to, "</p>");

} else {

fprintf(write_to, "
");

}

}

The function open code paragraph is.

The function close code paragraph is.

3/web - Website Maker x6 93

x6. In the age of CSS, old-fashioned elements like halign for individual table cells are deprecated, so:

void open_table_cell(FILE *write_to) {

if (use_css_code_styles) {

fprintf(write_to, "<td>");

} else {

fprintf(write_to, "<td halign=\"left\" valign=\"top\">");

}

}

void close_table_cell(FILE *write_to) {

if (use_css_code_styles) {

fprintf(write_to, "</td>");

} else {

fprintf(write_to, " </td>");

}

}

The function open table cell is.

The function close table cell is.

x7. Making an HTML page from a template.

FILE *COPYTO = NULL;

void web_copy(char *from, char *to) {

if ((from == NULL) || (to == NULL) || (strcmp(from, to) == 0))

fatal("files confused in website maker");

HTML_pages_created++;

COPYTO = fopen(to, "w");

if (COPYTO == NULL) { error_1("unable to open file to be written for web site", to); return; }

file_read(from, "can't open template file", FALSE, copy_html_line, 0);

fclose(COPYTO);

}

The function web copy is called from 1/main and 3/rel.

x8. Each line in turn comes here, then:

void copy_html_line(char *line, text_file_position *tfp) {

int i;

for (i=0; line[i]; i++) {

hDetect square-bracketed names of Web variables and expand them 9i;
fprintf(COPYTO, "%c", line[i]);

}

fprintf(COPYTO, "\n");

}

The function copy html line is.

3/web - Website Maker x9 94

x9.

hDetect square-bracketed names of Web variables and expand them 9i �
if (line[i] == '[') {

int j;

for (j=i+1; (line[j] && line[j]!=']'); j++) ;

if (line[j] == ']') {

line[j] = 0; copy_placeholder_to(line+i+1, COPYTO); line[j] = ']';

i = j;

continue;

}

}

This code is used in x8.

x10. Rendering the source text as HTML pages. This is a �ddly operation, which requires us to
parse the source text and then typeset it appealingly in a whole suite of HTML pages. This necessarily
involves loops, but our main aim is to complete the process in O(N) running time, where N is the number
of lines in the source text. (Note that the number of HTML �les to be written will also be O(N).)

This is done in two passes. On pass 1, we scan the source text for tables and headings, and divide the
whole into \segments", each of which is typeset as a single HTML page: segments do not quite correspond
to headings, as we shall see. But we write nothing. On pass 2, we actually write these HTML pages.

char source_text[MAX_FILENAME_LENGTH];

void web_copy_source(char *template, char *website_pathname) {

strcpy(source_text, read_placeholder("SOURCELOCATION"));

scan_source_text();

write_source_text_pages(template, website_pathname);

}

The function web copy source is called from 3/rel.

x11. Pass 1: scanning the source for tables and headings. During this scan, we will maintain the
following variables:

int within_a_table; are we inside a Table declaration in the source text?

int scan_quoted_matter; are we inside double-quoted matter in the source text?

int scan_comment_nesting; level of nesting of comments in source text: 0 means \not in a comment"

text_file_position *latest_line_position; ftell-reported byte o�set of the start of the current line in the

source

table *current_table; the Table which started most recently, or NULL if none has

heading *current_heading; the heading seen most recently, or NULL if none has been

segment *current_segment; the segment which started most recently, or NULL if none has

int position_of_documentation_bar; line count of the ---- Documentation ---- line, if there is one

3/web - Website Maker x12 95

x12. Pass 1 has running time O(N) since it calls scan_source_line exactly once for each line in the source,
and scan_source_line looks only at a single line and at the current table, heading and segment.

void scan_source_text(void) {

within_a_table = FALSE;

scan_comment_nesting = 0;

scan_quoted_matter = FALSE;

latest_line_position = NULL;

current_table = NULL;

current_heading = NULL;

current_segment = NULL;

position_of_documentation_bar = MAX_SOURCE_TEXT_LINES;

file_read(source_text, "can't open source text of project", TRUE, scan_source_line, NULL);

hAdjust heading levels downwards as far as we can without losing relative hierarchy 13i;
}

The function scan source text is.

x13. Suppose our source contains only headings at levels 3 and 4: we can reduce these to levels 0 and 1
without disturbing their relative importance, and that makes it easier for us to typeset them in a sensible
way { there's no point making any typographic allowance for three sizes of headings greater than are found
anywhere in the source text.

hAdjust heading levels downwards as far as we can without losing relative hierarchy 13i �
int minhl = 10;

heading *h;

LOOP_OVER(h, heading)

if (h->heading_level < DOC_LEVEL)

if (h->heading_level < minhl)

minhl = h->heading_level;

LOOP_OVER(h, heading)

if (h->heading_level < DOC_LEVEL)

h->heading_level -= minhl;

This code is used in x12.

x14. Here we scan each single line. (Lines to us may look like whole paragraphs to the Inform user; we're
dealing with gaps between explicit line break characters.)

void scan_source_line(char *line, text_file_position *tfp) {

int lc = tfp_get_line_count(tfp), lv = DULL_LEVEL;

latest_line_position = tfp;

if (scan_quoted_matter == FALSE)

hLook at the �rst word on the line to �nd the level of our interest 15i;
if ((scan_comment_nesting > 0) && (lv != EMPTY_LEVEL)) lv = DULL_LEVEL;

hCorrect the comment nesting level ready for next time 16i;
if ((lv == DULL_LEVEL) && (current_heading)) current_heading->heading_has_content = TRUE;

if ((lv == EMPTY_LEVEL) && (within_a_table)) hEnd a table here and return 18i;
if (lv == TABLE_LEVEL) hStart a new table here and return 17i;
if ((lv == EMPTY_LEVEL) || (lv == DULL_LEVEL)) return;

if (lv == DOC_LEVEL) position_of_documentation_bar = lc;

hPlace a new heading here 19i;
}

The function scan source line is.

3/web - Website Maker x15 96

x15. Looking at the �rst word, if any, tells whether we are a heading, or the start of a table, or an empty
line, or none of these (in which case a line is perhaps unfairly called \dull"). We set lv accordingly.

de�ne EMPTY_LEVEL -1

de�ne DULL_LEVEL 0

de�ne TABLE_LEVEL 1000

de�ne DOC_LEVEL 1001

de�ne EXAMPLE_LEVEL 1002

de�ne DOC_CHAPTER_LEVEL 1003

de�ne DOC_SECTION_LEVEL 1004

hLook at the �rst word on the line to �nd the level of our interest 15i �
char fword[32];

extract_word(fword, line, 32, 1);

if (fword[0] == 0) lv = EMPTY_LEVEL;

if (strcmp(fword, "table") == 0) lv = TABLE_LEVEL;

if (lc > position_of_documentation_bar) {

if (strcmp(fword, "chapter:") == 0) lv = DOC_CHAPTER_LEVEL;

if (strcmp(fword, "section:") == 0) lv = DOC_SECTION_LEVEL;

if (strcmp(fword, "example:") == 0) lv = EXAMPLE_LEVEL;

} else {

if (strcmp(fword, "volume") == 0) lv = 1;

if (strcmp(fword, "book") == 0) lv = 2;

if (strcmp(fword, "part") == 0) lv = 3;

if (strcmp(fword, "chapter") == 0) lv = 4;

if (strcmp(fword, "section") == 0) lv = 5;

if (strcmp(fword, "----") == 0) {

extract_word(fword, line, 32, 2);

if (strcmp(fword, "documentation") == 0) {

extract_word(fword, line, 32, 3);

if (strcmp(fword, "----") == 0) lv = DOC_LEVEL;

}

}

}

This code is used in x14.

x16.

hCorrect the comment nesting level ready for next time 16i �
int i;

for (i=0; line[i]; i++) {

if (line[i] == '[') scan_comment_nesting++;

if (line[i] == ']') scan_comment_nesting--;

if (line[i] == '\"') scan_quoted_matter = (scan_quoted_matter)?FALSE:TRUE;

}

This code is used in x14.

3/web - Website Maker x17 97

x17.

hStart a new table here and return 17i �
current_table = CREATE(table);

current_table->table_line_start = lc;

current_table->table_line_end = MAX_SOURCE_TEXT_LINES;

within_a_table = TRUE;

return;

This code is used in x14.

x18.

hEnd a table here and return 18i �
current_table->table_line_end = lc;

within_a_table = FALSE;

return;

This code is used in x14.

x19.

hPlace a new heading here 19i �
heading *new_h = CREATE(heading);

strncpy(new_h->heading_text, line, ABBREVIATED_HEADING_LENGTH);

(new_h->heading_text)[ABBREVIATED_HEADING_LENGTH] = 0;

new_h->heading_level = lv;

new_h->heading_line = lc;

new_h->heading_has_content = FALSE;

if ((current_heading == NULL) || (current_heading->heading_has_content) ||

(lv == DOC_LEVEL)) {

if (current_segment) current_segment->ends_at = lc - 1;

current_segment = CREATE(segment);

current_segment->begins_at = lc;

current_segment->ends_at = MAX_SOURCE_TEXT_LINES;

current_segment->start_position_in_file = *latest_line_position;

current_segment->most_recent_heading = current_heading;

current_segment->most_recent_table = current_table;

current_segment->documentation = FALSE;

if (lc >= position_of_documentation_bar) current_segment->documentation = TRUE;

}

new_h->heading_to_segment = current_segment;

current_heading = new_h;

This code is used in x14.

3/web - Website Maker x20 98

x20. Pass 2: writing the source text pages. Though there is no obvious way that the following routine
passes control to the routines below it, in fact it does: web_copy works on the template and �nds reserved
variables such as \[SOURCE]"; expanding those then calls the routines below.

segment *segment_being_written = NULL;

int no_doc_files = 0, no_src_files = 0;

void write_source_text_pages(char *template, char *website_pathname) {

char contents_page[MAX_FILENAME_LENGTH];

sprintf(contents_page, "%s%c%s.html", website_pathname, SEP_CHAR,

read_placeholder("SOURCEPREFIX"));

char *contents_leafname = get_filename_leafname(contents_page);

hDevise URLs for the segments 21i;
hWork out how the segments link together 22i;
hGenerate the prefatory page, which isn't a segment 23i;
hGenerate the segment pages 24i;

}

The function write source text pages is.

x21. Calling these URLs is a bit grand, since they are only leafnames. The source segments have pages
source_0.html and so on up; the documentation pages doc_0.html and so on up.

hDevise URLs for the segments 21i �
segment *seg;

LOOP_OVER(seg, segment) {

segment_being_written = seg;

if (seg->documentation) {

sprintf(seg->segment_url, "doc_%d.html", no_doc_files++);

seg->page_number = no_doc_files;

} else {

sprintf(seg->segment_url, "%s_%d.html",

read_placeholder("SOURCEPREFIX"), no_src_files++);

seg->page_number = no_src_files;

}

}

This code is used in x20.

3/web - Website Maker x22 99

x22.

hWork out how the segments link together 22i �
segment *seg, *first_doc_seg = NULL, *first_src_seg = NULL;

LOOP_OVER(seg, segment) {

if (seg->documentation) {

seg->link_home = NULL;

seg->link_contents = NULL;

seg->link_previous = NULL;

seg->link_next = NULL;

if (first_doc_seg == NULL) first_doc_seg = seg;

} else {

seg->link_home = NULL;

seg->link_contents = NULL;

seg->link_previous = NULL;

seg->link_next = NULL;

if (first_src_seg == NULL) {

first_src_seg = seg;

seg->link_previous = contents_leafname;

}

}

}

LOOP_OVER(seg, segment) {

if (seg->documentation) {

seg->link_home = "index.html";

seg->link_contents = first_doc_seg->segment_url;

} else {

seg->link_home = "index.html";

seg->link_contents = contents_leafname;

}

segment *before = seg;

while (TRUE) {

before = PREV_OBJECT(before, segment);

if (before == NULL) break;

if (before->documentation == seg->documentation) {

seg->link_previous = before->segment_url; break;

}

}

segment *after = seg;

while (TRUE) {

after = NEXT_OBJECT(after, segment);

if (after == NULL) break;

if (after->documentation == seg->documentation) {

seg->link_next = after->segment_url; break;

}

}

}

This code is used in x20.

3/web - Website Maker x23 100

x23.

hGenerate the prefatory page, which isn't a segment 23i �
segment_being_written = NULL;

source_HTML_pages_created++;

web_copy(template, contents_page);

This code is used in x20.

x24.

hGenerate the segment pages 24i �
segment *seg;

LOOP_OVER(seg, segment) {

char segment_page[MAX_FILENAME_LENGTH];

sprintf(segment_page, "%s%c%s", website_pathname, SEP_CHAR, seg->segment_url);

segment_being_written = seg;

source_HTML_pages_created++;

web_copy(template, segment_page);

segment_being_written = NULL;

}

This code is used in x20.

x25. This is what \[PAGENUMBER]" in the template becomes.

void expand_PAGENUMBER_variable(FILE *COPYTO) {

int p = 1;

if (segment_being_written) p = segment_being_written->page_number;

fprintf(COPYTO, "%d", p);

}

The function expand PAGENUMBER variable is called from 3/place.

x26. And similarly \[PAGEEXTENT]".

void expand_PAGEEXTENT_variable(FILE *COPYTO) {

int doc = FALSE, n = 0;

if ((segment_being_written) && (segment_being_written->documentation)) doc = TRUE;

if (doc) n = no_doc_files; else n = no_src_files;

if (n > 0) fprintf(COPYTO, "%d", n); else fprintf(COPYTO, "1");

}

The function expand PAGEEXTENT variable is called from 3/place.

3/web - Website Maker x27 101

x27. And this is what \[SOURCELINKS]" in the template becomes:

void expand_SOURCELINKS_variable(FILE *COPYTO) {

segment *seg = segment_being_written;

if (seg) {

if (seg->link_home)

fprintf(COPYTO, "Home page", seg->link_home);

if (seg->link_contents)

fprintf(COPYTO, "Beginning", seg->link_contents);

if (seg->link_previous)

fprintf(COPYTO, "Previous", seg->link_previous);

if (seg->link_next)

fprintf(COPYTO, "Next", seg->link_next);

} else {

fprintf(COPYTO, "Home page");

fprintf(COPYTO, "Complete text",

read_placeholder("SOURCEPREFIX"));

}

}

The function expand SOURCELINKS variable is called from 3/place.

x28. When working on \[SOURCE]" or \[SOURCENOTES]", we will need to run through a segment of the
source text, one line at a time. As we do so, we'll maintain the following variables, along with current_style

(for which see the CSS discussion above):

FILE *SPAGE = NULL; where the output is going

int SOURCENOTES_mode = FALSE; TRUE for \[SOURCENOTES]", FALSE for \[SOURCE]"

int quoted_matter = FALSE; are we inside double-quoted matter in the source text?

int i6_matter = FALSE; are we inside verbatim I6 code in the source text?

int comment_nesting = 0; nesting level of comments in source text being read: 0 for not in a comment

int next_footnote_number = 1; number to assign to the next footnote which comes up

heading *latest_heading = NULL; a heading which is always behind the current position

table *latest_table = NULL; a table which is always behind the current position

x29. So this is \[SOURCE]" (if noting_mode is FALSE) or \[SOURCENOTES]" (if TRUE).

void expand_SOURCE_or_SOURCENOTES_variable(FILE *write_to, int SN) {

if (SN) hTypeset the little Notes subheading 31i;
open_code(write_to);

hInitialise the variables to their state at the start of an HTML page 30i;
hRead the source text and feed it one line at a time to the line-writer 32i;
close_code(write_to);

}

The function expand SOURCE or SOURCENOTES variable is called from 3/place.

3/web - Website Maker x30 102

x30. So at the start of the preface or of any segment:

hInitialise the variables to their state at the start of an HTML page 30i �
next_footnote_number = 1;

SPAGE = write_to;

SOURCENOTES_mode = SN;

quoted_matter = FALSE;

i6_matter = FALSE;

comment_nesting = 0;

current_style = NULL;

latest_heading = FIRST_OBJECT(heading);

latest_table = FIRST_OBJECT(table);

This code is used in x29.

x31. We expect any use of \[SOURCENOTES]" to come after the relevant \[SOURCE]", so that looking
at next_footnote_number will tell us how many notes there were.

hTypeset the little Notes subheading 31i �
if (next_footnote_number == 1) return; there were no footnotes at all

fprintf(write_to, "<p>");

open_style(write_to, "notesheading");

if (next_footnote_number == 2) fprintf(write_to, "Note"); just one

else fprintf(write_to, "Notes"); more than one

close_style(write_to, "notesheading");

fprintf(write_to, "</p>\n");

This code is used in x29.

x32. We want to be very careful about running time here. This paragraph will run about H times, where
H is the number of headings (in fact at most H +1 times and usually a little less); but we might reasonably
expect that H is proportional to N , since there's typically a heading every 30 or so lines in the source text,
so that H ' N=30. If we then did the simplest thing, of opening the source text �le and sending every line
to write_source_line, we would make O(N2) calls, and even though many of those would quickly return it
would be an expensive algorithm.

Instead, we start at the relevant position in the source text for the current HTML page, and we stop the
moment that write_source_line reports that it has gone past the material of interest. We thus make at
most N +H calls to write_source_line (the extra H calls being for one overspill line per segment, where we
realise that we've gone too far).

hRead the source text and feed it one line at a time to the line-writer 32i �
text_file_position *start = NULL;

if (segment_being_written) hStart from just the right place in the source �le 33i;
file_read(source_text, "can't open source text", TRUE, source_write_iterator, start);

This code is used in x29.

x33. The following simulates the e�ect of running through the uninteresting lines before the segment begins:

hStart from just the right place in the source �le 33i �
start = &(segment_being_written->start_position_in_file);

if (segment_being_written->most_recent_heading)

latest_heading = segment_being_written->most_recent_heading;

if (segment_being_written->most_recent_table)

latest_table = segment_being_written->most_recent_table;

This code is used in x32.

3/web - Website Maker x34 103

x34.

void source_write_iterator(char *line, text_file_position *tfp) {

int done_yet = write_source_line(line, tfp);

if (done_yet) tfp_lose_interest(tfp);

}

The function source write iterator is.

x35. And this is where we write lines. We arrive here with exactly the same line count as the scanner
observed before on pass 1, so we can validly compare our current line count against those stored for tables,
headings and segments.

When this routine returns TRUE, it signals that there is no further need for the source text, and that saves
reading in all of the remaining lines which won't be needed.

int write_source_line(char *line, text_file_position *tfp) {

int line_count = tfp_get_line_count(tfp);

if (segment_being_written == NULL) hFilter out lines for the preface 36i
else hFilter out lines for the segments 37i;
if (SOURCENOTES_mode) hTypeset the line in [SOURCENOTES] mode 38i
else hTypeset the line in [SOURCE] mode 39i;
return FALSE;

}

The function write source line is.

x36. Recall that the source text is divided into an initial portion containing no headings { the \preface" {
and then segments, each of which begins with a heading.

Here we are handling the case of typesetting the preface. We allow the line to appear as normal if it is before
the �rst segment; once we reach the �rst segment { if there's a �rst segment to reach { we then typeset the
contents listing. (If there's no �rst segment, then there are no headings, and there's no need for a contents
listing.) If we've output the contents listing then we are �nished writing the preface and don't need to read
the source text further, so we return TRUE.

hFilter out lines for the preface 36i �
segment *first_segment = FIRST_OBJECT(segment);

if ((first_segment) && (line_count == first_segment->begins_at - 1) && (line[0] == 0))

return FALSE; don't bother to typeset a blank line just before the �rst segment is reached

if ((first_segment) && (line_count == first_segment->begins_at)) {

typeset_contents_listing(TRUE);

return TRUE;

}

This code is used in x35.

x37. The segment pages are easier: in this case we allow the line only if it lies inside the segment, and
otherwise suppress it. Once we've gone beyond the segment, we don't need to read any further, so we return
TRUE.

hFilter out lines for the segments 37i �
if (line_count < segment_being_written->begins_at) return FALSE;

if (line_count > segment_being_written->ends_at) return TRUE;

if (line_count == position_of_documentation_bar + 1)

typeset_contents_listing(FALSE);

This code is used in x35.

3/web - Website Maker x38 104

x38. In [SOURCENOTES] mode, we detect footnotes in the form of comments in the source text marked
by asterisks; each one is assigned the next footnote number, and typeset. All other material is ignored.

hTypeset the line in [SOURCENOTES] mode 38i �
int i;

for (i=0; line[i]; i++) {

if ((line[i] == '[') && (line[i+1] == '*')) {

fprintf(SPAGE, "<p>", next_footnote_number);

open_style(SPAGE, "notetext");

fprintf(SPAGE, "[%d]. ", next_footnote_number);

next_footnote_number++;

i+=2;

while ((line[i]) && (line[i] != ']')) {

fprintf(SPAGE, "%c", line[i++]);

}

close_style(SPAGE, "notetext");

fprintf(SPAGE, "</p>\n");

}

}

This code is used in x35.

x39. In [SOURCE] mode, we need to work out appropriate type styles to embellish the line, then indent it
suitably, then typeset it character by character.

hTypeset the line in [SOURCE] mode 39i �
int embolden = FALSE, tabulate = FALSE, underline = FALSE;

hDecide any typographic embellishments due to the line falling inside a table 42i;
hThe top line of the preface or any segment is in bold 43i;
hAny heading line is in bold 44i;

if (tabulate) { fprintf(SPAGE, "<tr>"); open_table_cell(SPAGE); }

int start = 0;

if (tabulate == FALSE) {

for (; line[start] == '\t'; start++) ;

open_code_paragraph(SPAGE, start);

}

hBegin typographic embellishments 40i;
hThe documentation requires some corrections 45i;

int i; for (i=start; line[i]; i++) hTypeset a single character of the source text 46i;

hEnd typographic embellishments 41i;
if (tabulate) { close_table_cell(SPAGE); fprintf(SPAGE, "</tr>\n"); }

else close_code_paragraph(SPAGE);

This code is used in x35.

x40. The type styles are easily applied, so let's do that now. The innermost one must be colour, since that
may change in the course of the line.

hBegin typographic embellishments 40i �
if (underline) open_style(SPAGE, "columnhead");

if (embolden) open_style(SPAGE, "heading");

if (current_style) open_style(SPAGE, current_style);

This code is used in x39.

3/web - Website Maker x41 105

x41. And they end in reverse order, so that they nest properly if need be:

hEnd typographic embellishments 41i �
if (current_style) close_style(SPAGE, current_style);

if (embolden) close_style(SPAGE, "heading");

if (underline) close_style(SPAGE, "columnhead");

This code is used in x39.

x42. The heading line of a source text Table is in bold; the column-headings line is underlined; and the
material inside appears in an HTML table, with tabulate mode set.

The while loop here needs a careful look, since on the face of it this could mean O(N) iterations { since the
number of tables is probably proportional to N { made in the course of the current \[SOURCE]" expansion.
Since the number of \[SOURCE]" expansions needed to make the website is also O(N) { the number of
HTML pages in the site is proportional to the number of headings, which is also proportional to N { there's
a risk that this while loop makes the whole website algorithm O(N2). This is why, on each \[SOURCE]"
expansion, latest_table is initialised not to the �rst table but to the most recent one at the start position of
the current HTML page. Moreover, the loop never goes past the current line count, which never goes outside
the range of lines in the current HTML page. The result is that over the course of all the \[SOURCE]"
expansions combined, the while loop here executes O(N) iterations in total.

hDecide any typographic embellishments due to the line falling inside a table 42i �
while ((latest_table) && (latest_table->table_line_end < line_count))

latest_table = NEXT_OBJECT(latest_table, table);

if (latest_table) {

int from = latest_table->table_line_start, to = latest_table->table_line_end;

if (line_count == from) {

embolden = TRUE;

} else if ((line_count > from) && (line_count < to)) {

tabulate = TRUE;

if (line_count == from + 1) {

underline = TRUE;

fprintf(SPAGE, "<table>");

}

} else if (line_count == to) {

fprintf(SPAGE, "</table>");

}

}

This code is used in x39.

x43.

hThe top line of the preface or any segment is in bold 43i �
if ((line_count == 1) ||

((segment_being_written) && (line_count == segment_being_written->begins_at)))

embolden = TRUE;

This code is used in x39.

3/web - Website Maker x44 106

x44. See the discussion of latest_table above for why the following while loop also doesn't make our
algorithm O(N2).

hAny heading line is in bold 44i �
while ((latest_heading) && (latest_heading->heading_line < line_count))

latest_heading = NEXT_OBJECT(latest_heading, heading);

if ((latest_heading) && (latest_heading->heading_line == line_count))

embolden = TRUE;

This code is used in x39.

x45.

hThe documentation requires some corrections 45i �
if ((comment_nesting == 0) && (quoted_matter == FALSE) && (i6_matter == FALSE) &&

(line[start] == '*') && (line[start+1] == ':') && (line[start+2] == ' '))

start += 3;

if (line_count == position_of_documentation_bar) strcpy(line, "Documentation");

This code is used in x39.

x46. We need to do two things: ensure that the character is HTML-safe, which means escaping out ", <,
> and & (but nothing else since the HTML �le will use a UTF-8 encoding, the same as that in the source
text); and keep track of the opening and closing of comments and quoted matter.

hTypeset a single character of the source text 46i �
switch (line[i]) {

case '\t':

a multiple tab is equivalent to a single tab in Inform source text

while (line[i+1] == '\t') i++;

hTypeset a tab 47i;
break;

case '"':

if ((comment_nesting > 0) || (i6_matter)) fprintf(SPAGE, """);

else hTypeset a double quotation mark outside of a comment 48i;
break;

case '[':

if (quoted_matter) { fprintf(SPAGE, "["); change_style(SPAGE, "substitution"); }

else if (i6_matter) fprintf(SPAGE, "[");

else hTypeset an open square bracket outside of a string 49i;
break;

case ']':

if (quoted_matter) { change_style(SPAGE, "quote"); fprintf(SPAGE, "]"); }

else if (i6_matter) fprintf(SPAGE, "]");

else hTypeset a close square bracket outside of a string 50i;
break;

case '(':

if ((comment_nesting == 0) && (quoted_matter == FALSE) && (i6_matter == FALSE) &&

(line[i+1] == '-')) { i++;

hTypeset the opening of I6 verbatim code 51i
} else fprintf(SPAGE, "("); break;

case '-':

if ((i6_matter) && (line[i+1] == ')')) { i++;

hTypeset the closing of I6 verbatim code 52i
} else fprintf(SPAGE, "-"); break;

3/web - Website Maker x47 107

case '<': fprintf(SPAGE, "<"); break;

case '>': fprintf(SPAGE, ">"); break;

case '&': fprintf(SPAGE, "&"); break;

default: fprintf(SPAGE, "%c", line[i]); break;

}

This code is used in x39.

x47. Inside a source-text Table, a tab moves to the next column, so we need to typeset a cell boundary in
our HTML <table>. Outside of that context, a tab is just white space and we turn it into a single space.

hTypeset a tab 47i �
if (tabulate) {

hEnd typographic embellishments 41i;
close_table_cell(SPAGE);

open_table_cell(SPAGE);

hBegin typographic embellishments 40i;
} else {

fprintf(SPAGE, " ");

}

This code is used in x46.

x48. The following enters or exits quoted-matter mode, and is structured so that the quotation marks are
not coloured { only the material inside them.

Our code in handling quoted and comment matter is greatly simpli�ed by the fact that a valid Inform text
cannot contain mismatched square brackets, and nor can a valid comment contain mismatched quotation
marks.

hTypeset a double quotation mark outside of a comment 48i �
if (quoted_matter) change_style(SPAGE, NULL);

fprintf(SPAGE, """);

if (quoted_matter == FALSE) change_style(SPAGE, "quote");

quoted_matter = (quoted_matter)?FALSE:TRUE;

This code is used in x46.

x49. On the other hand, the squares around a comment do pick up the colour of the commentary within
them. Asterisked comments must end in the same paragraph as they begin, and must not contain nested
further comments.

hTypeset an open square bracket outside of a string 49i �
if (line[i+1] == '*') {

advance past the end of the asterisked comment

while ((line[i]) && (line[i+1] != ']')) i++; if (line[i]) i++;

hTypeset a footnote cue 53i;
} else {

comment_nesting++;

if (comment_nesting == 1) change_style(SPAGE, "comment");

fprintf(SPAGE, "[");

}

This code is used in x46.

3/web - Website Maker x50 108

x50.

hTypeset a close square bracket outside of a string 50i �
fprintf(SPAGE, "]");

comment_nesting--;

if (comment_nesting == 0) change_style(SPAGE, NULL);

This code is used in x46.

x51. Styling applied to I6 verbatim code does not apply to the purely-I7 markers \(-" and \-)" around it:

hTypeset the opening of I6 verbatim code 51i �
fprintf(SPAGE, "(-");

change_style(SPAGE, "i6code");

i6_matter = TRUE;

This code is used in x46.

x52.

hTypeset the closing of I6 verbatim code 52i �
change_style(SPAGE, NULL);

fprintf(SPAGE, "-)");

i6_matter = FALSE;

This code is used in x46.

x53. The \cue" of a footnote is the reference in the body of the text, which is conventionally printed as
a superscript number. We leave that to the span linknotes if we have CSS, and otherwise render in grey
superscript.

hTypeset a footnote cue 53i �
open_style(SPAGE, "linknotes");

fprintf(SPAGE, "[%d]",

next_footnote_number, next_footnote_number);

close_style(SPAGE, "linknotes");

next_footnote_number++;

This code is used in x49.

3/web - Website Maker x54 109

x54. That just leaves the little contents listings { one for the source, and another for the documentation
(if any).

void typeset_contents_listing(int source_contents) {

int benchmark_level = (source_contents)?0:DOC_CHAPTER_LEVEL;

int current_level = benchmark_level-1, new_level;

heading *h;

LOOP_OVER(h, heading)

if (((source_contents) && (h->heading_line < position_of_documentation_bar)) ||

((source_contents == FALSE) && (h->heading_line > position_of_documentation_bar))) {

new_level = h->heading_level;

if (h->heading_level == EXAMPLE_LEVEL) new_level = DOC_CHAPTER_LEVEL;

hOpen or close UL tags to move to the new heading level 55i;
fprintf(SPAGE, "%s\n",

h->heading_to_segment->segment_url, h->heading_text);

}

new_level = benchmark_level-1;

hOpen or close UL tags to move to the new heading level 55i;
}

The function typeset contents listing is.

x55. This is how we obtain our nested UL tags: current_level starts and ends at b � 1, and can only
change its value by executing the following loops. Since it never changes to a value lower than 0 except when
returning to b � 1 at the end, we are always inside at least the outermost , and since the net change
over the whole process is 0, there must be as many steps upward as downward { so every is closed by
a matching .

hOpen or close UL tags to move to the new heading level 55i �
while (new_level > current_level) { fprintf(SPAGE, ""); current_level++; }

while (new_level < current_level) { fprintf(SPAGE, ""); current_level--; }

This code is used in x54.

Base64 3/b64

Purpose

To produce base64-encoded story �les ready for in-browser play by a Javascript-based interpreter such as
Parchment.

3/b64.x1-4 Base 64

x1. Base 64. This encoding scheme is de�ned by the Internet standard RFC 1113. Broadly, the idea is to
take a binary stream of bytes, break it into threes, and then convert this into a sequence of four emailable
characters. To encode 24 bits in four characters, we need six bits per character, so we need 26 = 64 characters
in all. Since 64 = 26 + 26 + 10 + 2, we can nearly get there with alphanumeric characters alone, adding just
two others { conventionally, plus and forward-slash. That's more or less the whole thing, except that we use
an equals sign to indicate incompleteness of the �nal triplet (which might have only 1 or 2 bytes in it).

RFC 1113 permits white space to be used freely, including in particular line breaks, but we don't avail
ourselves.

char *RFC1113_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=";

x2. The encoding routine is as follows.

void encode_as_base64(char *in_filename, char *out_filename, char *top, char *tail) {

FILE *IN = fopen(in_filename, "rb");

if (IN == NULL)

fatal_fs("can't open story file for base-64 encoding", in_filename);

FILE *OUT = fopen(out_filename, "w"); a text �le, not binary

if (OUT == NULL)

fatal_fs("can't open base-64 encoded story file for output", out_filename);

if (top) fprintf(OUT, "%s", top);

while (TRUE) {

int triplet[3], triplet_size = 0;

hRead the triplet of binary bytes, storing 0 to 3 in the size read 3i;
if (triplet_size == 0) break;

int quartet[4];

hConvert triplet to a quartet 4i;
int i; for (i=0; i<4; i++) fputc(RFC1113_table[quartet[i]], OUT);

if (triplet_size < 3) break;

}

if (tail) fprintf(OUT, "%s", tail);

fclose(IN); fclose(OUT);

}

The function encode as base64 is called from 3/rel.

3/b64 - Base64 x3 111

x3. If the �le ends in mid-triplet, we pad out with zeros.

hRead the triplet of binary bytes, storing 0 to 3 in the size read 3i �
triplet[0] = fgetc(IN);

if (triplet[0] != EOF) {

triplet_size++;

triplet[1] = fgetc(IN);

if (triplet[1] != EOF) {

triplet_size++;

triplet[2] = fgetc(IN);

if (triplet[2] != EOF)

triplet_size++;

}

}

int i; for (i=triplet_size; i<3; i++) triplet[i] = 0;

This code is used in x2.

x4.

hConvert triplet to a quartet 4i �
int i; for (i=0; i<4; i++) quartet[i] = 0;

quartet[0] += (triplet[0] & 0xFC) >> 2;

quartet[1] += (triplet[0] & 0x03) << 4;

quartet[1] += (triplet[1] & 0xF0) >> 4;

quartet[2] += (triplet[1] & 0x0F) << 2;

quartet[2] += (triplet[2] & 0xC0) >> 6;

quartet[3] += (triplet[2] & 0x3F) << 0;

switch (triplet_size) {

case 1: quartet[2] = 64; quartet[3] = 64; break;

case 2: quartet[3] = 64; break;

}

This code is used in x2.

